首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn. 证明方程组AX=b有无穷多个解;
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn. 证明方程组AX=b有无穷多个解;
admin
2016-10-23
92
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α
1
+2α
2
…+(n一1)α
n一1
=0,b=α
1
+α
2
+…+α
n
.
证明方程组AX=b有无穷多个解;
选项
答案
因为r(A)=n一1,又b=α
1
+α
2
+…+α
n
,所以[*]=n一1,即r(A)=[*]=n一1<n,所以方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/yZT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
[*]
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
假设随机变量U在区间[-2,2]上服从均匀分布,随机变量试求:(I)X和Y的联合概率分布;(Ⅱ)D(X+Y).
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max{x,y}≤1}=________.
随机试题
Ifyoutravelaroundtheworld,youwillbesurprisedtofindthatforeigncustomscanbedifferent【C1】______yourown.Avisitor
患者,男性,30岁,有吸毒史(注射)。近半年来体重减轻,发烧,口腔反复发生真菌感染。首先考虑为AIDS。首先应使用药物治疗的是()
(2007年)开展价值工程活动的目的是()。
国际服务贸易
2005年3月,甲公司与乙公司签订的租赁合同约定:甲公司将其面积为500平方米的办公用房出租给乙公司;租期25年;租金每月1万元,以每年官方公布的通货膨胀率为标准逐年调整;乙公司应一次性支付两年的租金。合同签订后,乙公司依约支付租金,甲公司依约交付了该房
行政法规规定,有限责任公司必须报经批准的,应当自批准之日起()天内向公司登记机关申请设立登记。
“精简、统一、效能”原则,是党和国家对机构编制工作的一贯要求,精简与效能原则的含义不包括()。
为什么阿基里斯追不上乌龟,但罗素却能由“2+2=5”推出“罗素是教皇”呢?根据材料分析人在认识活动中应该注意哪些问题?
如果要在整个报表的最后输出信息,需要设置
Thedriver______thepassengersoffatthesupermarketandthenwenttothenextstop.
最新回复
(
0
)