首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程y〞+2y′-3y=(2χ+1)eχ的通解.
求微分方程y〞+2y′-3y=(2χ+1)eχ的通解.
admin
2019-08-23
73
问题
求微分方程y〞+2y′-3y=(2χ+1)e
χ
的通解.
选项
答案
特征方程为λ
2
+2λ-3=0,特征值为λ
1
=1,λ
2
=-3, 则y〞+2y′-3y=0的通解为y=C
1
e
χ
+C
2
e
-3χ
. 令原方程的特解为y
0
=χ(aχ+b)e
χ
,代入原方程得a=[*],b=[*], 所以原方程的通解为y=C
1
e
χ
+C
2
e
-3χ
+[*](2χ
2
+χ)e
χ
(C
1
,C
2
为任意常数).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/M9A4777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明:存在ξ∈(0,3),使f’’(ξ)=0。
设函数y=f(x)由参数方程(t>一1)所确定,其中ψ(t)具有二阶导数,且ψ(1)=,ψ’(1)=6,已知,求函数ψ(t)。[img][/img]
设可导函数y=y(x)由方程∫0x+ye—t2dt=∫0xxsin2tdt确定,则=______。
f(x)=在区间(-∞,﹢∞)内零点的个数为()
设函数F(x)在所讨论的区间上可导.下述命题正确的是()
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设f(χ)在χ=0的邻域内二阶连续可导,=2,求曲线y=f(χ)在点(0,f(0))处的曲率.
设平面区域D由曲线围成,则等于()
以y=C1ex+ex(C2cosx+C3sinx)为特解的三阶常系数齐次线性微分方程为_______.
设有微分方程y′-2y=φ(χ),其中φ(χ)=试求在(-∞,+∞)内的连续函数为_______,y=y(χ),使之在(-∞,1),(1,+∞)内都满足所给方程,且满足条件y(0)=0.
随机试题
Mr.Wangsaidsuchathing______tohappenatschoolagainandheforgavemethistime.
A.Iappreciateyourhelpingme.B.Nowthatyou’veaskedme,Ithinkit’stooshort.C.IfIwereyou,I’dwriteaboutmyeduca
女性,45岁。干咳、活动后气短、乏力2个月。2年前曾发现双侧肺门淋巴结肿大,因无症状未予诊治。查体:双下肢可见散在分布的红色丘疹,双下肺可闻及少许湿啰音。胸部CT提示双肺弥漫性网状、小结节状阴影,双下肺呈蜂窝肺改变,肺门纵隔淋巴结无肿大。(2015年第
关于呼吸道合胞病毒肺炎的发病年龄正确的是
工程监理单位的职责不包括( )。
保持币值稳定,促进经济增长是我国中央银行货币政策的()。
依据施工合同示范文本规定,索赔事件发生后的28天内,承包人应向工程师递交( )。
天然皮革的抗张力、撕裂强度均比人造皮革好。()
房地产开发企业用于在建商品房的土地使用权,在资产负债表中应列示的项目为()。
在市场经济环境下,企业要生存发展,就必须和对手展开竞争,企业间竞争时刻都在进行,不可避免。竞争是激发企业活力的催化剂,没有竞争,企业就会失去发展的动力和前进的方向。但竞争要讲究策略,体现智慧,不能逞匹夫之勇,不能没有尺度。更不能失去底线。像泼妇那样的骂街,
最新回复
(
0
)