首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)与φ(x,y)均为可微函数,且φ’’(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( )
设f(x,y)与φ(x,y)均为可微函数,且φ’’(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( )
admin
2020-03-01
73
问题
设f(x,y)与φ(x,y)均为可微函数,且φ
’’
(x,y)≠0。已知(x
0
,y
0
)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( )
选项
A、若f
x
’
(x
0
,y
0
)=0,则f
y
’
(x
0
,y
0
)=0。
B、若f
x
’
(x
0
,y
0
)=0,则f
y
’
(x
0
,y
0
)≠0。
C、若f
x
’
(x
0
,y
0
)≠0,则f
y
’
(x
0
,y
0
)=0。
D、若f
x
’
(x
0
,y
0
)≠0,则f
y
’
(x
0
,y
0
)≠0。
答案
D
解析
令F=f(x,y)+λφ(x,y),
若f
x
’
(x
0
,y
0
)=0,由(1)得λ=0或φ
x
’
(x
0
,y
0
)=0。当λ=0时,由(2)得f
y
’
(x
0
,y
0
)=0,
但λ≠0时,由(2)及φ
y
’
(x
0
,y
0
)≠0得f
y
’
(x
0
,y
0
)≠0因而A,B错误。
若f
x
’
(x
0
,y
0
)≠0,由(1),则λ≠0,再由(2)及φ
y
’
(x
0
,y
0
)≠0,则f
y
’
(x
0
,y
0
)≠0。
转载请注明原文地址:https://www.kaotiyun.com/show/LgA4777K
0
考研数学二
相关试题推荐
=__________.
z=f(xy)+yg(x2+y2),其中f,g二阶连续可导,则=_______
设3阶行列式D,的第2行元素分别为1、一2、3,对应的代数余子式分别为一3、2、1,则D3=__________.
设向量组α1=(2,1,1,1),α2=(2,1,a,a),α3=(3,2,1,a),α4=(4,3,2,1)线性相关,且a≠1,则a=________.
若向量组(Ⅰ):α1=(1,0,0)T,α2=(1,1,0)T,α3=(1,1,1)T可由向量组(Ⅱ):β1,β2,β3,β4线性表示,则向量组(Ⅱ)的秩为________.
(Ⅰ)请用等价、同阶、低阶、高阶回答:设f(x)在x0可微,f’(x0)≠0,则Ax→0时f(x)在x=x0处的微分与△x比较是()无穷小,△y=f(x0+△x)-f(x0)与△x比较是()无穷小,△y-df(x)与△x比较是()无
设f(x)=∫-1x(1一|t|)dt(x>一1),求曲线y=f(x)与x轴所围成的平面区域的面积.
设f(χ)∈C[a,b],在(a,b)内二阶可导,且f〞(χ)≥0,φ(χ)是区间[a,b]上的非负连续函数,且∫abφ(χ)dχ=1.证明:∫abf(χ)φ(χ)dχ≥f[∫abχφ(χ)dχ].
(2013年)设D是由曲线y=,直线χ=a(a>0)及χ轴所围成的平面图形,Vχ,Vy,分别是D绕χ轴,y轴旋转一周所得旋转体的体积.若Vy=10Uχ求a的值.
化为极坐标系中的累次积分为()
随机试题
年轻女性自发性气胸患者,胸片示肺组织压缩近30%,进一步处理应该选择()
试述子宫的固定装置。
风湿性二尖瓣狭窄应与哪些疾病相鉴别?
李先生,70岁,晨间醒后出现头痛、眩晕、肢体麻木,医师诊断为“脑梗死”,此时不可应用的护理措施为
根据支付结算法律制度的规定,下列关于预算单位零余额账户使用的表述中,正确的是()。
甲公司是一家制造业企业,信用级别为A级,目前没有上市的债券,为投资新产品项目,公司拟通过发行每张面值1000元的5年期债券进行筹资,公司采用风险调整法估计拟发行债券的税前债务资本成本,并以此确定该债券的票面利率。2020年1月1日,公司收集了当时上市交易
北京时间2011年3月11日下午1点46分,日本近海发生9级地震,地震引发海啸,并引发核电站爆炸造成大量人员伤亡。加上之前的智利、海地及中国汶川大地震,地震的频繁发生让民众产生恐慌情绪。有人谣传食用碘盐可预防核辐射,海水被放射性物质污染而没法再提炼盐,广东
以下关于非对称密钥加密的描述,错误的是(50)。
姐姐拿了第一名。
ItisoftenthechildrenwhotrulyleadtheeldersintoAmerica,thesonswhotaketheirfatherstotheirfirstbaseballgameor
最新回复
(
0
)