首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设在一次试验中事件A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为__________,而事件A至多发生一次的概率为___________.
设在一次试验中事件A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为__________,而事件A至多发生一次的概率为___________.
admin
2019-05-08
64
问题
设在一次试验中事件A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为__________,而事件A至多发生一次的概率为___________.
选项
答案
1-q
n
(q=1-p);(1-p)
n
+np(1-p)
n-1
解析
由于每次试验中事件A发生的概率都是p,且n次试验相互独立,这是n重伯努利试验概型.设B
k
={n次试验中事件A发生忌次),由命题3.1.2.2得到
P(B
k
)=C
n
k
p
k
(1-p)
n-k
(k=0,1,…,n).
又事件A至少发生一次的概率,由命题3.1.2.3知,A至少发生一次的概率为1-(1-p)
2n
.或
1-P(B
0
)=1-C
n
0
p
0
(1-p)
n-0
=1-(1-p)
n
=1-q
n
(q=1-p).
事件A至多发生一次的概率为
P(B
0
)+P(B
1
)=C
n
0
p
0
(1-p)
n=0
+C
n
1
p(1-p)
n-1
=(1-p)
n
+np(1-p)
n-1
.
注:命题3.1.2.2 设在一次试验中事件A发生的概率为p(0<p<1),令事件B
k
={n重伯努利试验概型中事件A恰好发生k次},则
P(B
k
)=C
n
k
p
k
(1-p)
n-k
(k=0,1,2,…,n). (3.1.2.2)
上述公式常称为伯努利概率公式.
在n重伯努利试验概型中除了经常用于计算“恰好发生k次”的概率外,还会被经常用来“计算至少成功一次”或“至少失败一次”的概率.
命题3.1.2.3 若每次试验成功的概率是p(0<p<1),失败的概率为q(q=1-p),则n次试验中至少成功一次的概率为1-(1-p)
n
=1-q
n
,至少失败一次的概率为1-p
n
.
转载请注明原文地址:https://www.kaotiyun.com/show/HoJ4777K
0
考研数学三
相关试题推荐
微分方程xy’=+y的通解为______.
对于任意两事件A和B,若P(AB)=0,则()
设a0=1,a1=2,a2=,an+1=an(n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,6],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
设A=有三个线性无关的特征向量,求a及An.
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:(1)AB=BA;(2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
利用变换x=arctant将方程cos4x+cos2x(2-sin2x)+y=tanx化为y关于t的方程,并求原方程的通解.
令[*]对[*]两边积分得[*]于是[*]故[*]
试讨论函数g(x)=在点x=0处的连续性.
随机试题
国外分销渠道的发展趋势包括()
持游戏说这一观点,认为艺术起源于人类所具有的游戏本能的思想家是
海产品或盐腌渍品常引起下列哪一类食物中毒?()
为获取稳定的原料供应保障,并增强中国企业在国际市场上的定价话语权,江州市贝钢集团经国家发改委的初步审核,拟收购澳洲一家铁矿石企业(里特公司)的铁矿资产。某国际知名律所AA受聘为里特公司提供法律咨询服务。由于国际铁矿石市场寡头垄断,日本、韩国和印度等多家公司
某市工商局和市消费者协会在对该市烟草市场进行联合检查过程中,认为某商场销售的某名牌烟草是以假充真,遂根据《消费者权益保护法》,共同署名对该商场做出罚款和销毁剩余伪劣烟草的处理决定,并于当日将价值6万元的烟草予以销毁。该商场不服,申请复议。复议机关接到申请后
产业技术政策的基本原则包括()。
下列现浇混凝土板工程量计算规则中,正确的说法是()。【2006年真题】
关于进口设备交货类别中,买卖双方应承担的风险表述正确的是()。【2004年真题】
Hemadeapromise_________heearnedmoney,hewouldbuildanewschooltohelpdevelopeducation.
Whatdoesthewomanaskabout?
最新回复
(
0
)