首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设R3中两个基α1=[1,1,0]T,α2=[0,1,1]T,α3=[1,0,1]T,β1=[1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T. 已知ξ在基β1,β2,β3下的坐标为[1,0,2]T,求考在基α1,α2,α3下的坐标.
设R3中两个基α1=[1,1,0]T,α2=[0,1,1]T,α3=[1,0,1]T,β1=[1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T. 已知ξ在基β1,β2,β3下的坐标为[1,0,2]T,求考在基α1,α2,α3下的坐标.
admin
2017-06-14
46
问题
设R
3
中两个基α
1
=[1,1,0]
T
,α
2
=[0,1,1]
T
,α
3
=[1,0,1]
T
,β
1
=[1,0,0]
T
,β
2
=[1,1,0]
T
,β
3
=[1,1,1]
T
.
已知ξ在基β
1
,β
2
,β
3
下的坐标为[1,0,2]
T
,求考在基α
1
,α
2
,α
3
下的坐标.
选项
答案
设 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Fpu4777K
0
考研数学一
相关试题推荐
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方稗组的通解.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.矩阵A的特征值和特征向量.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.令P=(α1,α2,α3),求p-1AP.
某地抽样调查结果表明,考生的外语成绩(百分制)近似正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分到84分之间的概率,如下表:
设f(x)为[0,1]上的单调增加的连续函数,证明
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
(1998年试题,十二)已知线性方程组(I)的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22.…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组(Ⅱ)的通解,并说明理由.
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
随机试题
A.抑制肠内细菌生长,促进乳酸杆菌繁殖B.与游离氨结合,从而降低血氨C.与氨合成尿素和鸟氨酸,从而降低血氨D.被细菌分解成乳酸和醋酸,使肠内呈酸性E.纠正氨基酸代谢不平衡,抑制假神经递质形成支链氨基酸在治疗肝性脑病中的机制是
病畜运步小心谨慎,姿势异常,病情时好时坏,瘤胃臌气。在呼吸、努责、排粪及起卧过程中出现磨牙、呻吟等疼痛表现。触诊剑状软骨和网胃区,出现疼痛反应,躲避或呻吟。心音变化较快,有声音低沉、击水音、摩擦音、杂音等临床表现的疾病是
中骨盆横径( )真结合径( )
砂仁具有的功效是
对敌百虫杀虫剂中毒的患者,洗胃忌用()
( )是指通过比较各个对象(或零部件)之间的功能水平位次和成本位次,寻找价值较低对象,并将其作为价值工程研究对象的对象选择方法。
把实物、教具呈示给学生观察,或通过示范性的实验来说明和印证要求学生掌握知识的一种教学方法称()。
按传输导体、介质状况的不同,光缆可以分为()。
在关系模型中,每个关系模式中的关键字(’)。
DoctorsevaluatethefollowingaboutkidsEXCEPT
最新回复
(
0
)