首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
admin
2013-04-04
75
问题
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵
(k为常数),且AB=0,求线性方程组Ax=0的通解.
选项
答案
由AB=0知r(A)+r(B)≤3,又A≠0,B≠0,故 1≤r(A)≤2, 1≤r(B)≤2. (1)若r(A)=2,必有r(B)=1,此时k=9. 方程组Ax=0的通解是t(1,2,3)
T
,其中t为任意实数. (2)若r(A)=1,则Ax=0的同解方程组是ax
1
+bx
2
+cx
3
=0且满足 如果c≠0,方程组的通解是t
1
(c,0,-a)
T
+t
2
(0,c,-b)
T
,其中t
1
,t
2
为任意实数; 如果c=0,方程组的通解是t
1
(1,2,0)
T
+t
2
(0,0,1)
T
,其中t
1
,t
2
为任意实数. (1)如果k≠9,则秩r(B)=2.由AB=0知r(A)+r(B)≤3.因此,秩r(A)=1, 所以Ax=0的通解是t
1
(1,2,3)
T
+t
2
(3,6,k)
T
,其中t
1
,t
2
为任意实数. (2)如果k=9,则秩r(B)=1,那么,秩f(A)=1或2. 若r(A)=2,则Ax=0的通解是t(1,2,3)
T
,其中t为任意实数. 若r(A)=1,对ax
1
+bx
2
+cx
3
=0,设c≠0,则方程组的通解是t
1
(c,0,-a)
T
+t
2
(0,c,-b)
T
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/4H54777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 D
已知f(x)=设F(x)=∫1xf(t)dt.(0≤x≤2)则F(x)为
(2011年)函数f(χ)=ln|(χ-1)(χ-2)(χ-3)|的驻点个数为【】
设在闭区间[a,b]上f(x)>0,f’(x)<0,f"(x)>0.记S1=∫abf(x)dx,S2=f(b)(b一a),S3=[f(a)+f(b)](b一a),则
设二次型f=x21+x22+x23+2αx1x2+2βx2x3+2x1x3经正交变换x=Py化成f=y22+2y23,其中x=(x1,x2,x3)T和y=(y1,y2,y3)T都是3维列向量,P是3阶正交矩阵.试求常数α,β.
设线性方程组设a1=a3=k,a2=a4=-k(k≠0),且β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通解.
设有方程y“+(4x+e2y)(y‘)3=0.将方程转化为x为因变量,y作为自变量的方程;
将下列曲线化为参数方程:
设广义积分收敛,则α的范围为().
设随机变量X的绝对值不大于1,P(X=1)=1/4,P(X=-1)=1/8,而在事件{-1
随机试题
Somefarmers______thatfoxesareanuisanceandthreattothefarm.
可放入带铜宫内节育器作为紧急避孕,正确的是
多普勒超声(经腹)早在第几周能显示胎心搏动
热邪犯肺,肺津被灼时的临床表现是()
属于稳定细胞的是
导致老年人死亡居第一位的是
下列关于了解被审计单位及其环境的说法中,错误的是()。
阅读下面的文字,根据要求作文。某位知名歌唱演员在接受中央电视台采访时谈到自己的变化:过去她出场面对观众说的第一句话是“大家好,我来了!”而现在她说的是“谢谢大家,你们来了!”也许类似的变化曾经发生在你的身上或身边,也许你对此有自己的感受和思考。请自拟题
【B1】【B10】
A、Theymetandexchangedideasonanimalbreeding.B、Theyfedmuleswiththebestfoodtheycouldfind.C、Theyparticipatedina
最新回复
(
0
)