首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型 f=x21+x22+x23+2αx1x2+2βx2x3+2x1x3 经正交变换x=Py化成f=y22+2y23,其中x=(x1,x2,x3)T和y=(y1,y2,y3)T都是3维列向量,P是3阶正交矩阵.试求常数α,β.
设二次型 f=x21+x22+x23+2αx1x2+2βx2x3+2x1x3 经正交变换x=Py化成f=y22+2y23,其中x=(x1,x2,x3)T和y=(y1,y2,y3)T都是3维列向量,P是3阶正交矩阵.试求常数α,β.
admin
2021-02-25
106
问题
设二次型
f=x
2
1
+x
2
2
+x
2
3
+2αx
1
x
2
+2βx
2
x
3
+2x
1
x
3
经正交变换x=Py化成f=y
2
2
+2y
2
3
,其中x=(x
1
,x
2
,x
3
)
T
和y=(y
1
,y
2
,y
3
)
T
都是3维列向量,P是3阶正交矩阵.试求常数α,β.
选项
答案
二次型f(x
1
,x
2
,x
3
)的矩阵为 [*] 因为P为正交矩阵,所以 [*] 即A与B相似,故A与B有相同的特征值λ
1
=0,λ
2
=1,λ
3
=2,这些特征值满足|λE—A|=0. 当λ
1
=0,则 [*] 当λ
2
=1,则 [*] 由式(1)和(2),可求得α=β=0. 注:本题可用特征值的性质和特征方程求得α,β如用|A|=0×1×2=0.|E-A|=0.
解析
本题主要考查二次型在正交变换下的不变量.令二次型f(x
1
,x
2
,x
3
)的矩阵为A,由标准形为f=y
2
2
+
2y
2
3
,知A的特征值为0,1,2,代入A的特征方程,求得α,β.
转载请注明原文地址:https://www.kaotiyun.com/show/9e84777K
0
考研数学二
相关试题推荐
设(2E一CB)A=C,其中A是3阶方阵A的转置矩阵,且.
求极限:
设f(x)具有连续导数,求
已知曲线上任一点切线的斜率为2x,并且曲线经过点(1,-2),求此曲线的方程.
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1,+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;
求函数f(χ)=(2-t)e-tdt的最值.
计算χy(χ+y)dσ,其中D是由χ2-y2=1及y=0,y=1围成的平面区域.
设z=f(χ,3χ-y),χ=g(y,z)+φ(),其中f,g,5φ在其定义域内可微,求.
若z=f(x,y)可微,且则当x≠0时=______
考虑二元函数f(x,y)的四条性质:①f(x,y)在点(x0,y0)处连续,②f(x,y)在点(x0,y0)处的两个偏导数连续,③f(x,y)在点(x0,y0)处可微,④f(x,y)在点(x0,y0)处的两个偏导数存在.则有()
随机试题
布莱克分类窝洞考虑的充填材料是
A.清热泻火、除烦止渴B.清热泻火、滋阴润燥C.清热泻火、泻火解毒D.清热泻火、退虚热E.清热泻火、泻下除积
交通运输主管部门负责危险化学品道路运输、水路运输的许可以及运输工具的安全管理,对危险化学品水路运输安全实施监督,负责危险化学品道路运输企业、水路运输企业的()人员的资格认定。
《国务院关于加强和改进消防工作的意见》中指出,作为消防安全重点单位的施工单位,对本单位进行消防安全检查评估的时间间隔为()。
()是指客户将委托要求通过电话报给证券经纪商,证券经纪商根据电话委托内容向证券交易所交易系统申报。
根据以下情境材料,回答问题。假如你是A省B市公安局信访处的一名工作人员,某日一批群众前来上访,为完成工作任务,保障群众利益,领导要求你认真负责此事,面对各种难题,你需要准确解决。有群众反映B市公安局信访渠道不畅,局领导要求你尽快改变这一现状,请问下列
越来越多的孩子,甚至是低龄儿童,都学会了玩电子产品。数据表明,手机、平板电脑等小屏幕的电子产品对孩子视力屈光度的影响远大于电视、投影。孩子使用电子产品大于20分钟以后经常出现揉眼睛的动作,说明眼睛已经很疲劳了。长期下来,近视度数就逐渐加深。尤其在黑暗的地方
《西游记》
HelpWantedAd.Outstandingopportunitywithlocalrealestatecorporation.Requiresstrongbackgroundinrealestate,finan
洋务运动首先兴办的是
最新回复
(
0
)