首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2006年试题,23)设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解.(I)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
(2006年试题,23)设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解.(I)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
admin
2021-01-19
97
问题
(2006年试题,23)设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解.(I)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A.
选项
答案
(I)依题意,因为[*]所以矩阵A的特征量是3,α=(1,1,1)
T
是A属于3的特征向量.又因为Aα
1
=0=0α
1
,Aα
2
=0=0α
2
,所以α
1
,α
2
是矩阵A属于λ=0的特征向量.所以矩阵A的特征值是3,0,0,且λ=0的特征向量为k
1
(一1,2,一1)
T
+k
2
(0,一1,1)
T
(k
1
,k
2
是不全为0的常数),λ=3的特征向量为k(1,1,1)
T
(k≠0为常数). (Ⅱ)因为α
1
,α
2
不正交,故要做Schmidt正交化:β
1
=α
1
=(一1,2,一1)
T
,[*]单位化:[*]令[*]则[*]
解析
本题考查了抽象矩阵的特征值与特征向量,正交矩阵和对角矩阵,要会求特征值与特征向量,会利用正交矩阵和对角矩阵的定义证明相关问题.
转载请注明原文地址:https://www.kaotiyun.com/show/8q84777K
0
考研数学二
相关试题推荐
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=___________。
某湖泊水量为V,每年排入湖泊中内含污染物A的污水量为,流入湖泊内不含A的水量为,流出湖的水量为.设1999年底湖中A的含量为5m0,超过国家规定指标.为了治理污染,从2000年初开始,限定排入湖中含A污水的浓度不超过.问至多经过多少年,湖中污染物A的含量降
设L:y=e-x(x≥0).求由y=e-x、x轴、y轴及x±a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).
设向量组α1,α2,α3线性相关,而α2,α3,α4线性无关,问:(1)α1能否用α2,α3线性表示?并证明之;(2)α4能否用α1,α2,α3线性表示?并证明之.
求2y一x=(x—y)ln(x—y)确定的函数y=y(x)的微分dy.
求分别满足下列关系式的f(x).1)f(x)=∫0xf(t)dt,其中f(x)为连续函数;2)f’(x)+xf’(一x)=x.
设曲线y=ax2(a≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D.求a的值,使V(a)为最大.
设A是n阶矩阵,证明:A=O的充要条件是AAT=O.
设四阶矩阵B满足BA-1=2AB+E,且A=,求矩阵B.
设f(χ)在区间[a,b]上二阶连续可导,证明:存在ξ∈(a,b),使得∫abf(χ)dχ=(b-a)ff〞(ξ).
随机试题
《糕点、面包》中规定铅含量不能超过()。
社会道德体系的基础层次是
蛛网膜下腔出血最常见的原因是()
属于第Ⅱ相生物转化的是()。
某地块甲价格为2000元/m2,地块乙为2200元/m2,若甲允许的容积率为7,乙为5,其他条件两块地相同,则两块地总价相比有()。
根据《中华人民共和国物体废弃物污染环境防治法》,对城市生活垃圾应当及时清运,逐步做到分类收集和运输,并积极开展合理利用和实施()处置。
下列关于债券收益率的说法,正确的是()。Ⅰ.当期收益率的优点在于简便易算,可以用于期限和发行人均较为接近的债券之间进行比较Ⅱ.不同期限附息债券之间,不能仅仅因为当期收益高低而评判优劣Ⅲ.通常在预期市场利率上升时,发行人会发行可赎回
甲公司为购买货物而将所持有的汇票背书转让给乙公司,但因担心以此方式付款后对方不交货,因此在背书栏中记载了“乙公司必须按期保质交货,否则不付款”的字样,乙公司在收到票据后没有按期交货。根据票据法律制度的规定,下列表述中,正确的是()。
不利于锌吸收的因素包括()。
WhoisGeorgeMitchell?
最新回复
(
0
)