首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则( ).
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则( ).
admin
2019-08-28
69
问题
设向量组(Ⅰ):α
1
,α
2
,…,α
s
的秩为r
1
,向量组(Ⅱ):β
1
,β
2
,…,β
s
的秩为r
2
,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则( ).
选项
A、α
1
+β
1
,α
2
+β
2
,…,α
s
+β
s
的秩为r
1
+r
2
B、向量组α
1
-β
1
,α
2
-β
2
,…,α
s
-β
s
的秩为r
1
-r
2
C、向量组α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
的秩为r
1
+r
2
D、向量组α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
的秩为r
1
答案
D
解析
因为向量组β
1
,β
2
,…,β
s
可由向量组α
1
,α
2
,…,α
s
线性表示,所以向量组α
1
,α
2
,…,α
s
与向量组α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
等价,选D.
转载请注明原文地址:https://www.kaotiyun.com/show/EeJ4777K
0
考研数学三
相关试题推荐
设随机变量X在区间[-1,2]上服从均匀分布,随机变量则方差DY=_______.
设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).
设f(x)在(一∞,+∞)上二阶导数连续,f(0)=01)确定a使g(x)在(一∞,+∞)上连续;2)证明对以上确定的a,g(x)在(一∞,+∞)上有连续一阶导数.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一的解,并在此时求x1;
设4元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1.0)T+k2(-1,2,2,1)T.问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解;若没有,则说明理由.
设二次型f(x1,x2,x3)经正交变换化成了标准形f=4y12+y22-2y32,求二次型f(x1,x2,x3).
随机变量X的密度为f(χ)=A,-∞<χ<∞,则A=_______.
设随机变量X,Y,Z相互独立,都服从指数分布,参数分别为λ1,λ2,λ3(均为正),求P{X=min(X,Y,Z)}.
设X1,…,Xn为相互独立的随机变量,Sn=X1+…+Xn,则根据列维一林德贝格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,…,Xn
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α
随机试题
人体内生物活性最强的雄激素是
理中丸中的君药是理中丸中的佐药是
下列材料中抗拉强度最大的是( )。
在初中体育课教学中,()属于体操教学。
对于共享单车来说,同样需要走出烧钱的比拼的阶段,寻求更能产生经济效益的经营模式。此次美团对摩拜的并购,为共享单车这个市场的突破寻找了新的方向。美团虽是一家实力雄厚的企业,在前两年公司估值已达70亿美元,并且通过与大众点评的策略合作积累了企业并购的经验,这使
织田信长(南京大学2001年世界古代中世纪史真题)
简述教育文献检索的基本过程。
法律推理的基本方法包括演绎推理的方法、归纳推理的方法和辩证推理的方法。在下列何种情况下需要采用辩证推理的方法?()
在设计程序时,应采纳的原则之一是()
Women’sRightsMovement1Women’srightsareguaranteesofpolitical,social,andeconomicequalityforwomeninasociety
最新回复
(
0
)