首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
admin
2017-12-29
58
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为三阶单位矩阵。
(Ⅰ)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B。
选项
答案
(Ⅰ)由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
1
,A
5
α
1
=α
1
,故 Bα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=一2α
1
, 即α
1
是矩阵B的属于特征值一2的特征向量。 由关系式B=A
5
一4A
3
+E及A的三个特征值λ
1
=1,λ
2
=2,λ
3
=一2得B的三个特征值为μ
1
=一2,μ
2
=1,μ
3
=1。 设α
1
,α
2
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
,α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0。 因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 [*] 得其基础解系为 [*] B的全部特征向量为 [*] 其中k
1
≠0,k
2
,k
3
不同时为零。 (Ⅱ)令P=(α
1
,α
2
,α
3
) [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/EUX4777K
0
考研数学三
相关试题推荐
假设随机变量X服从参数为λ的指数分布,求随机变量Y=1一eλX的概率密度函数fy(y).
利用列维一林德伯格定理,证明:棣莫弗一拉普拉斯定理.
截至2010年10月25日,上海世博会参观人数超过了7000万人.游园最大的痛苦就是人太多.假设游客到达中国馆有三条路径,沿第一条路径走3个小时可到达;沿第二条路径走5个小时又回到原处;沿第三条路径走7个小时也回到原处.假定游客总是等可能地在三条路径中选
设f(x)在[a,b]上连续且严格单调增加.证明:(a+b)∫abf(x)dx<2∫abxf(x)dx.
设f(x)连续,f(0)=1,f’(0)=2,下列曲线与曲线y=f(x)必有公共切线的是()
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅱ)等价.
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元。假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布。问季初应安排多少这种商品,可以使期望销售利润最大?
若DX=0.004,利用切比雪夫不等式估计概率P{|X—EX|<0.2}.
设有4阶方阵A满条件AAT=2I,|A|<0,其中I是4阶单位矩阵。求A的伴随矩阵A*的一个特征值。
设二次型f(x1,x2,x3)=ax12+ax22+(n一1)x23+2x1x3—2x2x3。若二次型f的规范形为y12+y22,求a的值。
随机试题
冠状动脉前降支栓塞可引起()
凝血酶时间延长见于
肺胀的急性发病期,可出现
A.胃肠道反应B.肝脏疾病C.神经系统疾病D.血液系统疾病E.心血管系统疾病药源性疾病是由药物诱发的疾病,是指在预防、诊断、治疗或调节生理功能过程中出现与用药有关的人体功能异常或组织损伤所引起的一系列临床症状。他汀类药
工程预付款起扣点可按公式计算:T=P-M/N,式中T表示( )。
王老师在教幼儿园的小朋友跟自己学做动作时,突然有一位孩子提出自己不想和老师做同样的动作,随着越来越多的孩子也提出同样的要求。后来,王老师改变了教学方法,改让孩子们做与自己不同的动作。下课后,孩子们都感觉这堂课非常好玩。这体现了幼儿教师()的职业特点
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
设A是n阶反对称矩阵,证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;
Asabewilderedcountryblinksinthetentativedaylightoffreedomafternearlyayearandahalfofunprecedentedrestrictio
Nowcustomhasnotbeencommonlyregardedasasubjectofanygreatimportance.Theinnerworkingsofourownbrainswefeelto
最新回复
(
0
)