首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(1,0,1)T,A=ααT,若B=(kE+A)*是正定矩阵,则k的取值范围是__________。
设α=(1,0,1)T,A=ααT,若B=(kE+A)*是正定矩阵,则k的取值范围是__________。
admin
2019-01-23
95
问题
设α=(1,0,1)
T
,A=αα
T
,若B=(kE+A)
*
是正定矩阵,则k的取值范围是__________。
选项
答案
k>0或k<一2
解析
矩阵A=αα
T
的秩为1,且tr(A)=α
T
α
T
=2,故矩阵A的特征值是2,0,0,从而矩阵kE+A的特征值是k+2,k,k。矩阵B=(kE+A)
*
=|kE+A|(kE+A)
-1
的特征值是k
2
,k(k+2),k(k+2)。
矩阵B正定的充要条件是特征值均大于零,即k
2
>0且k(k+2)>0,解得k>0或k<一2。
转载请注明原文地址:https://www.kaotiyun.com/show/CmP4777K
0
考研数学三
相关试题推荐
设A是n阶反对称矩阵.(1)证明:对任何n维列向量α,恒有αTAα=0.(2)证明:对任何非零常数c,矩阵A+cE恒可逆.
已知A=[α1,α2,α3,α4]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=[α3,α2,α1,β一α4],求方程组Bx=α1—α2的通解.
设A为m×n矩阵,B是n×m矩阵,证明:AB和BA有相同的非零特征值.
已知n阶矩阵A=[aij]n×n有n个特征值分别为λ1,λ2,…,λn,证明:
设两个线性方程组(I),(Ⅱ)为证明:方程组(I)有解的充分必要条件是方程组(Ⅱ)无解.
设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
设随机变量X1和X2各只有一1,0,1等三个可能值,且满足条件P{Xi=一1}=P{Xi=1}=(i=1,2).试在下列条件下分别求X1和X2的联合分布.(1)P{X1X2=0}=1;(2)P{X1+X2=0}=
设f(x1,x2)=,则二次型的对应矩阵是________。
已知二次型f(x1,x2,x3)=x12+5x22+x32+2x1x2+2ax2x3为正定二次型,则a的取值范围________.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为①求A.②证明A+E是正定矩阵.
随机试题
A、可抗血小板聚集和抗血栓形成B、主要用于肝素过量引起的出血C、直接激活纤溶酶原转变为纤溶酶,起到溶血栓作用D、主要用于恶性贫血和巨幼红细胞性贫血E、用于香豆素类引起自发性出血的解救鱼精蛋白的作用
由毒肽类和毒伞肽类引起的毒蕈中毒主要引起
下列关于固体分散技术的特点,错误的是()。
中药饮片处方书写要求中,调剂、煎煮的特殊要求注明在药品()。
在火灾扑救中,如果能阻断火灾三要素的任何一个要素就可以扑灭火灾。火灾的三要素是指()。
社区参与的形式包括()。
编写公司简介的步骤不包括()。
清水断崖位于中国台湾省东部海岸,依山傍海,崖岸壁立,为台湾八大名胜之一。读图,回答下列问题。下列关于台湾岛河流水文特征的叙述正确的是()。
试述斯金纳的操作性条件反射原理,并举例说明如何应用该原理来培养和塑造儿童的良好行为。(2013.82)
A、Doctorstreatedthepatients.B、Doctorswerepaidtokeeppeoplewell.C、Peoplewerefrightenedofdoctors.D、Theytreatedeac
最新回复
(
0
)