首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=[α1,α2,α3,α4]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=[α3,α2,α1,β一α4],求方程组Bx=α1—α2的通解.
已知A=[α1,α2,α3,α4]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=[α3,α2,α1,β一α4],求方程组Bx=α1—α2的通解.
admin
2017-07-26
131
问题
已知A=[α
1
,α
2
,α
3
,α
4
]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)
T
+k(1,一2,4,0)
T
,又B=[α
3
,α
2
,α
1
,β一α
4
],求方程组Bx=α
1
—α
2
的通解.
选项
答案
由方程组的解Ax=β的结构知 r(A)=r[α
1
,α
2
,α
3
,α
4
]=3, α
1
+2α
2
+2α
3
+α
4
=β,α
1
—2α
2
+α
3
=0. 因为B=[α
3
,α
2
,α
1
,β一α
4
]=[α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
],且α
1
,α
2
,α
3
线性相关,可见r(B)=2. 由[*]=α
1
—α
2
知,(0,一1,1,0)
T
是方程组Bx=α
1
—α
2
的一个解. [*] 知(4,一2,1,0)
T
,(2,一4,0,1)
T
是Bx=0的两个线性无关的解,故Bx=α
1
—α
2
的通解是 (0,一1,1,0)
T
+k
1
(4,一2,1,0)
T
+k
2
(2,一4,0,1)
T
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/tyH4777K
0
考研数学三
相关试题推荐
求f(x,y,z)=2x+2y—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
[*]
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份,随机地取一个地区的报名表,从中先后抽出两份.(Ⅰ)求先抽到的一份是女生的概率p;(Ⅱ)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q.
[*]
曲线r=1+cosθ的全长为_____.
设,E为3阶单位矩阵.
求幂级数的收敛域及和函数.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设函数y=f(x)具有二阶导数,且f’(x)>0,f(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设f(x)在x=0的某邻域内二阶连续可导,且绝对收敛.
随机试题
A①thetheoryoflanguageunderlyingthecommunicativeapproach②thetheoryoflearningunderlyingthecommunicativeappr
A、fakirspossessmagicpowerB、IndiansarenotafraidofpainC、peoplecanlearntocopewithpainD、somepeoplearebornwithou
简述旧民主主义革命向新民主主义革命转变的历史必然性。
麻疹传染性最强的时间是
下列哪项不是肝硬化形成的原因
当存款人需要在异地开立个人银行结算账户时,应出具的证明文件是()。
人本位儿童观认为()。(郑州)
一般侵权责任的归责原则是()
有下面一个程序段,从文本框中输入数据,如果该数据满足条件,除以4余1,除以5余2则输出,否则,将焦点定位在文本框中,并清除文本框的内容。 Private Sub Command1_Click( ) x=Val(Text1.Text) If【
MiriamandChristianRengier,aGermancouplemovingtoNewYork,visitedsomeprivateelementaryschoolsinManhattanlastspri
最新回复
(
0
)