首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I):α1=(2,4,-2)T,α2=(-1,a-3,1)T,α3=(2,8,b-1)T;(Ⅱ):β1=(2,b+5,-2)T,β2=(3,7,a-4)T,β3=(1,2b+4,-1)T.问. a,b取何值时,r(I)=r(Ⅱ),但(I)与(Ⅱ
设向量组(I):α1=(2,4,-2)T,α2=(-1,a-3,1)T,α3=(2,8,b-1)T;(Ⅱ):β1=(2,b+5,-2)T,β2=(3,7,a-4)T,β3=(1,2b+4,-1)T.问. a,b取何值时,r(I)=r(Ⅱ),但(I)与(Ⅱ
admin
2019-12-26
71
问题
设向量组(I):α
1
=(2,4,-2)
T
,α
2
=(-1,a-3,1)
T
,α
3
=(2,8,b-1)
T
;(Ⅱ):β
1
=(2,b+5,-2)
T
,β
2
=(3,7,a-4)
T
,β
3
=(1,2b+4,-1)
T
.问.
a,b取何值时,r(I)=r(Ⅱ),但(I)与(Ⅱ)不等价?
选项
答案
以α
1
,α
2
,α
3
,β
1
,β
2
,β
3
为列作矩阵,并对该矩阵作初等行变换化成行阶梯形矩阵: [*] 由以上行阶梯形矩阵,得 当a=1,b≠-1时,r(I):r(Ⅱ)=2,但r(I)≠r(I,Ⅱ):3,故(I)与(Ⅱ)不等价. 当a≠1,b=-1时,仍有r(I)=r(Ⅱ)=2,但r(I)≠r(I,Ⅱ)=3,故(I)与(Ⅱ)也不等价. 综上可知,当a≠1,且b≠-1,或a=1,且b=-1时,r(I)=r(Ⅱ),从而(I)与(Ⅱ)等价;当a=1,且b≠-1或a≠1,且b=-1时,r(I)=r(Ⅱ),但(I)与(Ⅱ)不等价.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/BGD4777K
0
考研数学三
相关试题推荐
已知β可用α1,α2,…,αs线性表示,但不可用α1,α2,…,αs-1线性表示.证明(1)αs不可用α1,α2,…,αs-1线性表示;(2)αs可用α1,α2,…,αs-1,β线性表示.
设α,β都是3维列向量,A=ααT+ββT.证明(1)r(A)≤2.(2)如果α,β线性相关,则r(A)<2.
设A=(α1,α2,…,αn)是实矩阵,证明ATA是对角矩阵α1,α2,…,αn两两正交.
求曲线y=(x>0)的渐近线.
向量组α1=(1,-1,3,0)T,α2=(-2,1,a,1)T,α3=(1,1,-5,-2)T的秩为2,则a=______.
在n阶行列式det(aij)n×n的展开式中任取一项,若此项不含元素a11的概率为,则此行列式的阶数n=__________.
设n维向量α=(a,0,…,0,a)T,a
z=f(xy)+yg(x2+y2),其中f,g二阶连续可导,则=________.
设f(x)在(一∞,+∞)上有定义,且对任意的x,y∈(一∞,+∞)有|f(x)一f(y)|≤|x一y|.证明:∫abf(x)dx一(b一a)f(a)≤(b一a)2.
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为k1设β=求Aβ.
随机试题
锋电位
中国共产党建设的主要经验和中心环节是()
2岁儿童股骨干完全骨折的复位为()
()是指“风险对冲过的基金”。
商业银行在个人理财业务中,超越客户的授权从事业务且没有经过客户追认的,其民事责任()。
【2016年】作业成本计算法与传统成本计算法的主要区别是间接费用的分配方法不同。()
下列()不属于房地产中介服务合同应当包括的内容。
根据载体不同,可以把课程资源划分为()。
婴儿刚出生时,最发达的感觉是()
In1975theCongressoftheUnitedStatespassedtheEducationofAllHandicappedChildrenAct,a【1】documentinspecialeducatio
最新回复
(
0
)