首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明: (1)存在ξ∈(a,b),使得f′(ξ)=2ξf(ξ). (2)存在η∈(a,b),使得ηf′(η)+f(η)=0.
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明: (1)存在ξ∈(a,b),使得f′(ξ)=2ξf(ξ). (2)存在η∈(a,b),使得ηf′(η)+f(η)=0.
admin
2019-08-23
43
问题
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:
(1)存在ξ∈(a,b),使得f′(ξ)=2ξf(ξ).
(2)存在η∈(a,b),使得ηf′(η)+f(η)=0.
选项
答案
(1)令φ(χ)=[*]f(χ),因为f(a)=f(b)=0,所以φ(a)=φ(b)=0, 由罗尔定理,存在ξ∈(a,b),使得φ′(ξ)=0, 而φ′(χ)=[*][f′(χ)-2χf(χ)]且[*]≠0,故f′(ξ)=2ξf(ξ). (2)令φ(χ)=χf(χ),因为f(a)=f(b)=0,所以φ(a)=φ(b)=0, 由罗尔定理,存在η∈(a,b),使得φ′(η)=0, 而φ′(χ)=χf′(χ)+f(χ),故ηf′(η)+f(η)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/92A4777K
0
考研数学二
相关试题推荐
设可导函数y=y(x)由方程∫0x+ye—t2dt=∫0xxsin2tdt确定,则=______。
设函数f(x)在区间(0,﹢∞)内可导,且f’(x)﹥0,求F(x)的单调区间,并求曲线y=F(x)的凹凸区间及拐点坐标.
微分方程2y”-5y’﹢2y=xe2x的通解为y=_______.
问a,b,c为何值时,向量组α1,α2,α3与β1,β2,β3是等价向量组?向量组等价时,求α1由β1,β2,β3线性表出的表出式及βα1由α1,α2,α3线性表出的表出式.
设excos2x与3x为某n阶常系数齐次线性微分方程的两个特解,设n为尽可能小的正整数,y(n)前的系数为1,则该微分方程为______.
设F(x)可导,下述命题:①F’(x)为偶函数的充要条件是F(x)为奇函数;②F’(x)为奇函数的充要条件是F(x)为偶函数;③F’(x)为周期函数的充要条件是F(x)为周期函数.正确的个数是()
[*]由密度函数求分布函数可以用积分法,但当涉及分段密度函数时一定要分清需要积分的区域,故一般先画个草图(图3-2),标出非零的密度函数,然后分不同情况观察(X,Y)落在给定的(x,y)左下方平面区域内的概率,从而计算F(x,y)的值。在计算随机变量满足某
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f″(x)<0,且f(x)在[0,1]上的最大值为M.求证:自然数n,存在唯一的xn∈(0,1),使得f′(xn)=.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
设f(χ,y)在单位圆χ2+y2≤1上有连续的偏导数,且在边界上取值为零,f(0,0)=2004,试求极限=_______.
随机试题
下面各项中,不是《中华人民共和国消费者权益保护法》立法目的的是()。
Whichdoordoesthiskey()to?
生产性噪声是由机器转动、气体排放、工件撞击、摩擦等产生的。生产性噪声可分为()三类。
如果提单是“CIF”贸易术语的合同的提单,则提单的运费栏中填写有“Freighttocollect”字样。()
对于基金监管“三公”原则,以下说法中正确的是()
企业有甲、乙两个辅助生产车间,按直接分配法核算辅助生产费用。5月份甲车间归集辅助生产费用108000元,分别向乙车间、基本生产车间和行政管理部门提供劳务400小时、4000小时和1400小时。则当月甲车间应向基本生产车间分配辅助生产费用()元。
甲公司是一家钟表企业,创立于十九世纪,一直被公认为是最好的钟表制造商之一。该公司在市场营销管理中强调生产优质产品,并通过由著名珠宝商店、大百货公司等构成的市场营销网络分销产品。二十世纪50年代之前,公司销售额始终呈上升趋势。但此后甲公司在本国市场上销售额和
商业银行最主要的负债是()。
幼儿园教师对本班工作全面负责,下列哪项属于幼儿园教师的职责()
UntilItookDr.Offutt’sclassinDeMathaHighSchool,Iwasanunderachievingstudent,butIleftthatclass【C1】______never
最新回复
(
0
)