首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2-2α3,Aα2=-α2,Aα3=8α1+6α2-5α3. (Ⅰ)写出与A相似的矩阵B; (Ⅱ)求A的特征值和特征向量; (Ⅲ)求秩r(A+E).
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2-2α3,Aα2=-α2,Aα3=8α1+6α2-5α3. (Ⅰ)写出与A相似的矩阵B; (Ⅱ)求A的特征值和特征向量; (Ⅲ)求秩r(A+E).
admin
2015-05-07
90
问题
已知A是3阶矩阵,α
1
,α
2
,α
3
是3维线性无关列向量,且Aα
1
=3α
1
+3α
2
-2α
3
,Aα
2
=-α
2
,Aα
3
=8α
1
+6α
2
-5α
3
.
(Ⅰ)写出与A相似的矩阵B;
(Ⅱ)求A的特征值和特征向量;
(Ⅲ)求秩r(A+E).
选项
答案
(Ⅰ)由于A(α
1
,α
2
,α
3
)=(3α
1
+3α
2
-2α
3
,-α
2
,8α
1
+6α
2
-5α
3
)=(α
1
,α
2
,α
3
)[*] 令P=(α
1
,α
2
,α
3
),因α
1
,α
2
,α
3
线性无关,故P可逆. [*],则有P
-1
AP=B,即A与B相似. (Ⅱ)[*] 可知矩阵B的特征值为-1,-1,-1,故矩阵A的特征值为-1,-1,-1. 对于矩阵B,由 -E-B=[*],得特征向量(0,1,0)
T
,(-2,0,1)
T
, 那么由Bα=λα即(P
-1
AP)α=λα,得A(Pα)=A(Pα).所以 [*]=(α
1
,α
2
,α
3
)[*]=α
2
,[*]=(α
1
,α
2
,α
3
)[*]=-2α
1
+α
3
是A的特征向量,于是A属于特征值-1的所有特征向量是 k
1
α
2
+k
2
(-2α
1
+α
3
),其中k
1
,k
2
不全为0. (Ⅲ)由A~B有A+E~B+E,故r(A+E)=r(B+E)=1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/7Y54777K
0
考研数学一
相关试题推荐
若二次型f(x1,x2,x3)=x12+ax22+x32+2x1x2-2x2x3-2ax1x3的正、负惯性指数都是1.则a=________.
设f(u)为连续函数,则二次积分在直角坐标系下化为二次积分_______.
设函数f(x,y)连续,交换二次积分次序=_______.
设对任意x>0,曲线y=f(x)上点(x,f(x))处的切线在y轴上的截距等于,求f(x)的一般表达式.
设函数z=z(x,y)由方程x2+y2+z2=xtf(x2)所确定,其中f是可微函数,计算并化成最简形式.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用第一问的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
用一块半径为r的圆形铁皮,剪去一圆心角为a的扇形,把余下部分围成一个圆锥.问a为何值时,圆锥的容积最大(图4—2所示)
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导,证明:在(a,b)内至少存在一点ξ,使得等式=f(ξ)-ξf’(ξ)成立。
设,证明:数列{an}有界。
设f(x)是周期为1的周期函数,在[0,1]上可导,且f(1)=0,记证明:存在一点ξ∈(0,1),使得f’(ξ)=0;
随机试题
下列选项中,关于绩效辅导的说法,错误的是()。
社会主义精神文明建设的目标是()
风湿,脉浮身重,汗出恶风者,宜用的治疗方药是
甲公司与乙公司签订买卖合同,由乙公司向甲公司供应某型号机器100台,总价款200万元。由丙公司作为甲公司付款的保证人,合同约定,丙公司承担一般保证责任。乙公司如期供货,由于甲公司未按期支付货款而引发纠纷。甲公司所在地为A市,乙公司所在地为B市,丙公司所在地
保证项目产品功能特性的过程是()。
下列项目开工建设准备工作中,在办理工程质量监督手续之后才能进行的工作是()。
掺入适量的缓凝剂能使混凝土()。
学校教学评价中最核心、最基本的活动是()。
从2002年到2006年,城镇就业人员年均增长()城镇与乡村就业人员比例最高的是哪一年()
在第五届全国大学生原创电影节上,所有情感跌宕的爱情故事片都出自戏剧学院;所有剧情烧脑的惊险动作片也都出自戏剧学院;所有情感跌宕的爱情故事片都不是剧情烧脑的惊险动作片,所有戏剧学院的原创都是由研究生完成的。根据以上陈述,以下哪项是不可能为真的?
最新回复
(
0
)