首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用第一问的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用第一问的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
admin
2021-11-09
104
问题
设
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.
利用第一问的结果判断矩阵B-C
T
A
-1
C是否为正定矩阵,并证明你的结论.
选项
答案
矩阵B-C
T
A
-1
C是正定矩阵. 由第一问的结果可知,矩阵D合同于矩阵 [*] 又D为正定矩阵,可知矩阵M为正定矩阵. 因矩阵M为对称矩阵,故B-C
T
A
-1
C为对称矩阵.对x=(0,0,…,0)
T
及任意的y=(y
1
,y
2
,…,y
n
)
T
≠0,有 [*] 即y
T
(B-C
T
A
-1
C)y>0,故B-C
T
A
-1
C为正定矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0gy4777K
0
考研数学二
相关试题推荐
设A是m×n阶矩阵,若ATA=O,证明:A=O.
设A为n阶矩阵,且Ak=O,求(E-A)-1.
设f(χ)二阶可导,f(0)=0,令g(χ)=(1)求g′(χ);(2)讨论g′(χ)在χ=0处的连续性.
设f(χ)=求f′(χ)并讨论其连续性.
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T.B=(α1,α2,α3),求Bx=b的通解;
设A为n阶矩阵,a1,a2,...,an是n维列向量,且an≠0,若Aa1=a2,Aa2=a3,...,Aan-1=an,Aan=0.求A的特征值与特征向量。
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化。
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数.若f(a)<0,则在区间(a,a+)内方程f(x)=0的实根个数为()
求条件概率P{X≤1|Y≤1}.
随机试题
下丘脑
男,64岁。有肺心病史5年,经常头痛头晕,1周来咳嗽加重,咳黄痰,呼吸困难,头痛加重,昨日起嗜睡、谵语。查体:神志不清,颜面水肿,球结膜水肿,口唇发绀,颈静脉充盈,双肺广泛干湿啰音,肝肋下4cm,腹水征(+),下肢水肿,膝反射减弱,巴宾斯基征(+),pH7
投资项目的社会影响具有()。
甲级和乙级设备监理单位应向质检总局委托的工作机构提交的文件不包括()。
世界上第一台电子计算机()年在美国研制成功。
下列项目内容中,属于法律事实的有()。
某企业为居民企业,其2020年发生如下经营业务:(1)取得产品销售收入6000万元。(2)发生产品销售成本3500万元。(3)发生销售费用800万元(其中,广告费600万元),管理费用400万元(其中,业务招待费80万元),财务费用80万元。
《国家中长期教育改革和发展规划纲要(2010—2020年)》中提出,创新人才培养模式必须()。
人民警察的保密纪律主要包括()。
Thepatient’sprogresswasveryencouragingashecould______getoutofbedwithouthelp.
最新回复
(
0
)