首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
过点(0,1)作曲线L:y=lnx的切线,切点为A,L与x轴交于B点,区域D由L与直线AB围成。求区域D的面积及D绕x轴旋转一周所得旋转体的体积。
过点(0,1)作曲线L:y=lnx的切线,切点为A,L与x轴交于B点,区域D由L与直线AB围成。求区域D的面积及D绕x轴旋转一周所得旋转体的体积。
admin
2018-12-19
140
问题
过点(0,1)作曲线L:y=lnx的切线,切点为A,L与x轴交于B点,区域D由L与直线AB围成。求区域D的面积及D绕x轴旋转一周所得旋转体的体积。
选项
答案
设切点坐标为A(x
0
,lnx
0
),斜率为[*],因此该点处切线方程为 y—lnx
0
=[*](x—x
0
), 又因为该切线过B(0,1),所以x
0
=e
2
,故切线方程为 [*] 切线与x轴交点为(1,0)。因此直线AB的方程为 [*] 区域的面积为 [*]=e
2
+1—(e
2
—1)=2。 旋转一周所围成的体积为 v=v
1
—v
2
=∫
1
e
2
π(lnx)
2
dx—[*] =(2e
2
一2)π一[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/73j4777K
0
考研数学二
相关试题推荐
设四元齐次线性方程组求:I与Ⅱ的公共解.
设α1,α2……αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α1+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么条件时,β1β2……βs也为Ax=0的一个基础解系.
已知3阶矩阵A的特征值为1,2,一3,求|A*+3A+2E|.
问λ取何值时,齐次线性方程组有非零解.
设方程组(1)与方程(2)x1+2x2+x3=a—1有公共解,求a的值及所有公共解.
已知函数f(x,y)=,则_________.
计算二重积分其中
计算下列反常积分(广义积分)的值.
计算二重积分其中D由曲线与直线及围成.
设曲线y=ax2(x≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D,求(1)D绕x轴旋转一周所成的旋转体的体积V(a);(2)a的值,使V(a)为最大.
随机试题
HowtoDealWithPressure?Withthecurrentmoodofglobal【C1】________(certain)andan【C2】________(economy)recession,people
患者,男性,20岁。全身瘙痒1月余,当地医院拟为皮炎或湿疹治疗无效,且皮损加重,夜间瘙痒明显。入院体检:皮损以腹部、大腿内侧为明显,表现为散在的针头大小红色或皮色丘疹,部分结痂少许渗出,手指间渗出明显,阴囊、包皮可见散在丘疹、结节。家中多人发生类似皮损。
偏重于甘温益气者,为偏重于和血止痛者,为
HRV图像由法国的地球观测卫星提供,不同波长的扫描通道有4个,对同一地物重复成像的周期为()。
(2013年)关于人力资本投资的说法,正确的是()。
以美国为例,20世纪70年代以前,由于美国证券市场不太景气,投资基金发展也相对缓慢,进入70年代,特别是到20世纪90年代,投资基金发展迅猛,证券市场的稳定发展是其最直接的原因。根据以上材料,回答下列问题:投资基金的对象包括()。
能力的发展与知识的掌握,技能的形成是不同步的。()
逻辑证明是对实践检验真理标准的补充,而不能成为检验真理的标准的原因是
设函数,则dz|(1,1)=_______.
A.disgracefulB.imperfectC.holdD.considerationE.approvedF.accordinglyG.nakedH.wanderingI.incorrectJ.ignora
最新回复
(
0
)