首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上二阶可导,且|f(χ)|≤a,|f〞(χ)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. (1)写出f(χ)在χ=c处带拉格朗日型余项的一阶泰勒公式; (2)证明:|f′(c)|≤2a+.
设f(χ)在[0,1]上二阶可导,且|f(χ)|≤a,|f〞(χ)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. (1)写出f(χ)在χ=c处带拉格朗日型余项的一阶泰勒公式; (2)证明:|f′(c)|≤2a+.
admin
2020-03-16
66
问题
设f(χ)在[0,1]上二阶可导,且|f(χ)|≤a,|f〞(χ)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.
(1)写出f(χ)在χ=c处带拉格朗日型余项的一阶泰勒公式;
(2)证明:|f′(c)|≤2a+
.
选项
答案
(1)f(χ)=f(c)+f′(c)(χ-c)+[*](χ-c)
2
,其中ξ介于c与χ之间. (2)分别令χ=0,χ=1,得 f(0)=f(c)-f′(c)c+[*]c
2
(0,c) f(1)=f(c)+f′(c)(1-c)+[*](1-c)
2
,ξ
2
∈(c,1), 两式相减,得f′(c)=f(1)-f(0)+[*](1-c)
2
,利用已知条件,得 |f′(c)|≤2a+[*][c
2
+(1-c)
2
], 因为c
2
+(1-c)
2
≤1,所以|f′(c)|≤2a+[*].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/4o84777K
0
考研数学二
相关试题推荐
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a);(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点ξ∈(1,3),使得φ’
讨论p,t为何值时,方程组无解?有解?有解时写出全部解.
求极限:
设Yx,Zx,Ux分别是下列差分方程的解yx+1+ayx=f1(x),yx+1+ayx=f2(x),yx+1+ayx=f3(x)求证:Zx=Yx+Zx+Ux是差分方程,yx+1+ayx=f1(x)+f2(x)+f3(x)的解.
用泰勒公式求下列极限:
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
设对上题中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
求函数y=(x∈(0.+∞))的单调区间与极值点,凹凸区间与拐点及渐近线.
[2017年]设y(x)是区间(0,)内的可导函数,且y(1)=0,点P是曲线L:y=y(x)上的任意一点,L在点P处的切线与Y轴相交于点(0,YP),法线与x轴相交于点(XP,0),若Xp=Yp,求L上点的坐标(x,y)满足的方程。
一条均匀链条挂在一个无摩擦的钉子上,链条长18m,运动开始时链条一边下垂8m,另一边下垂10m,问整个链条滑过钉子需要多长时间?
随机试题
下列对心源性呼吸困难的描述中,不正确的是
A.在膝上部,髌底中点上方2寸处B.在小腿外侧,腓骨小头直下2寸C.屈膝,在髌韧带两侧凹陷处D.在小腿内侧,内踝尖上5寸,胫骨内侧面的中央E.在小腿前侧上部,当犊鼻下5寸,胫骨前缘旁开一横指膝眼穴的定位是
A.不换金正气散B.芍药汤C.驻车丸D.桃花汤E.连理汤治疗痢疾之湿热痢,应首选
下列关于供货方项目管理的目标,描述错误的是()。
下列各项中,关于资产减值的表述不正确的是()。(2013年)
选题计划的总体构思中一般包括()等内容。
新课程改革用_______代替了教学大纲。
考虑一个经济:,这个经济有1000单位资本和1000个工人,工人的名义工资水平为W,经济的一般物价水平为P。(2009年中国人民大学802经济学综合)如果政府要求企业把实际工资上涨到1,会导致就业量如何变化?
设y=y(x)二阶可导,且若y=y(x)的一个拐点是(x0,3),则β=______.
Eachofusisworkinghardtobehappy.Happinessbringssubstantialbenefitsforsociety【C1】______.Thereisclearand【C2】_____
最新回复
(
0
)