首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2-α3,α2+α3线性相关,则a=_______.
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2-α3,α2+α3线性相关,则a=_______.
admin
2019-03-18
82
问题
设向量组α
1
,α
2
,α
3
线性无关,且α
1
+aα
2
+4α
3
,2α
1
+α
2
-α
3
,α
2
+α
3
线性相关,则a=_______.
选项
答案
5
解析
(α
1
+aα
2
+4α
3
,2α
1
+α
2
-α
3
,α
2
+α
3
)(α
1
,α
2
,α
3
)
,
因为α
1
,α
2
,α
3
线性无关,而α
1
+aα
2
+4α
3
,2α
1
+α
2
-aα
3
,α
2
+α
3
线性相关,所以
解得a=5.
转载请注明原文地址:https://www.kaotiyun.com/show/0bV4777K
0
考研数学二
相关试题推荐
求|z|在约束条件下的最大值与最小值.
设A、B为同阶实对称矩阵,A的特征值全大于a,B的特征值全大于b,a、b为常数,证明:矩阵A+B的特征值全大于a+b.
设二次型f(x1,x2,x3)=x12+x22+x32+4x1x2+4x1x3+4x2x3,写出f的矩阵A,求出A的特征值,并指出曲面f(x1,x2,x3)=1的名称.
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
设α=(α1,α2,…,αn)T是Rn中的非零向量,方阵A=ααT.(1)证明:对正整数m,存在常数t,使Am=tm一1A,并求出t;(2)求一个可逆矩阵P,使P一1AP=Λ为对角矩阵.
设f(x)在[a,b]上连续,在(a,b)内可导,f(a)=f(b)=0,试证在(a,b)内存在点ξ,使f1(ξ)+f2(ξ)=0.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(,0).
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“
设函数f(x,y)可微,又f(0,0)=0,f’x(0,0)=a,f’y(0,0)=b,且φ(t)=f[t,f(t,t2)],求φ’(0).
求微分方程yy〞=y′2满足初始条件y(0)=y′(0)=1的特解.
随机试题
复元活血汤的功用是
与应激最密切相关的中枢神经系统位包括
肉瘤的主要转移途径是( )
大黄泻下攻积,最恰当的用法应该是
城市规划区内集体所有的土地出让,应具备的法定条件是()。
委托代理是基于被代理人的委托而发生的代理关系。通常以完成特定事项为代理内容。()
对施工中出现的进度偏差和质量缺陷问题,承包人的项目经理可以采取的措施包括()。
按原料来源分,家具可分为木质家具、金属家具(铝合金家具)、塑料家具、竹藤家具等。()
皮革厂的资本家购买皮革是作为()。
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(1)Ax=0和(2)ATAx=0,必有()
最新回复
(
0
)