首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(1)Ax=0和(2)ATAx=0,必有( )
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(1)Ax=0和(2)ATAx=0,必有( )
admin
2019-07-12
81
问题
设A为n阶矩阵,A
T
是A的转置矩阵,对于线性方程组(1)Ax=0和(2)A
T
Ax=0,必有( )
选项
A、(1)的解是(2)的解,(2)的解也是(1)的解
B、(1)的解是(2)的解,(2)的解不是(1)的解
C、(2)的解是(1)的解,(1)的解不是(2)的解
D、(2)的解不是(1)的解,(1)的解也不是(2)的解
答案
A
解析
如果α是(1)的解,有Aα=0,可得
A
T
Aa=A
T
(Aα)=A
T
0=0,
即α是(2)的解。故(1)的解必是(2)的解。
反之,若α是(2)的解,有A
T
Aα=0,用α
T
左乘可得
0=α
T
0=α
T
(A
T
Aα)=(α
T
A
T
)(Aα)=(Aα)
T
(Aα),
若设Aα=(b
1
,b
2
,…,b
n
),那么
(Aα)
T
(Aα)=b
1
2
+b
2
2
+…+b
n
2
=0
b
i
=0(i=1,2,…,n)
即Aa=0,说明α是(1)的解。因此(2)的解也必是(1)的解。所以应选A。
转载请注明原文地址:https://www.kaotiyun.com/show/RxJ4777K
0
考研数学三
相关试题推荐
[*]
设u=f(x),其中z是由z=y+xφ(z)确定的x,y的函数,其中f(z)与φ(z)为可微函数.证明:
设两台同样的记录仪,每台无故障工作的时间服从参数为5的指数分布,首先开动其中一台,当发生故障时停用而另一台自动开动.求两台记录仪无故障工作的总时间T的概率密度.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
(2008年)设f(x)是周期为2的连续函数。(I)证明对任意实数t,有∫tt+2f(x)dx=∫02f(x)dx;(Ⅱ)证明G(x)=∫0x[2f(t)一∫tt+2f(s)ds]dt是周期为2的周期函数。
(2015年)设{xn}是数列,下列命题中不正确的是()
(2004年)设随机变量X的分布函数为F(x;α,β)=其中参数α>0,β>1。设X1,X2,…,Xn为来自总体X的简单随机样本。(Ⅰ)当α=1时,求未知参数β的矩估计量;(Ⅱ)当α=1时,求未知参数β的最大似然估计量;(Ⅲ)
设A为n阶矩阵且r(A)=n=1.证明:存在常数k,使得(A*)2=kA*.
将一枚骰子重复掷n次,则当n→∞时,n次掷出点数的算术平均值依概率收敛于______。
随机试题
当考虑了人们的预期因素之后,菲利普斯曲线将发生怎样的变化?这种变化有什么样的政策意义?
关于注射用A型肉毒毒素管理的说法,正确的是
依据企业会计准则所得税的规定,企业所得税会计的核算方法是
Conventionalwisdomaboutconflictseemsprettymuchcutanddried.Toolittleconflictbreedsapathy(冷漠)andstagnation(呆滞).
分泌生长激素的器官是
患者,男,89岁。久病卧床,近日来冷汗自出,四肢厥逆,面色苍白,舌淡苔白,脉微欲绝。用药宜首选
村镇道路是村镇规划范围内路面宽度在()m以上道路的总称。
甲股份有限公司(以下简称“甲公司”)于20×3年开始对高管人员进行股权激励。具体情况如下:(1)20×3年1月2日,甲公司与50名高管人员签订股权激励协议并经股东大会批准。协议约定:甲公司向每名高管授予120000份股票期权,每份期权于到期日可以8元/股
Celebrate.Celebrate.PhysiciansaredelightedwithaFoodandDrugAdministration(FDA)advisorypanel’srecommendationearliert
A、Thebookstore.B、TheGreatWall.C、Thehotel.D、Thetravelagency.B根据原文(8)处可知,女士说:“我想预订乘坐汽车去长城的游览。”可以得知女士想要左长城游览,故选B。
最新回复
(
0
)