首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为 ( )
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为 ( )
admin
2018-08-22
74
问题
设n维列向量组α
1
,α
2
,…,α
m
(m<n)线性无关,则n维列向量组β
1
,β
2
,…,β
m
线性无关的充分必要条件为 ( )
选项
A、向量组α
1
,α
2
,…,α
m
可由向量组β
1
,β
2
,…,β
m
线性表出
B、向量组β
1
,β
2
,…,β
m
可由向量组α
1
,α
2
,…,α
m
线性表出
C、向量组α
1
,α
2
,…,α
m
与向量组β
1
,β
2
,…,β
m
等价
D、矩阵A=[α
1
,α
2
,…,α
m
]与矩阵B=[β
1
,β
2
,…,β
m
]等价
答案
D
解析
A=[α
1
,α
2
,…,α
m
],B=[β
1
,β
2
,…,β
m
]等价
r(α
1
,α
2
,…,α
m
)=r(β
1
,β
2
,…,β
m
)
β
1
,β
2
,…,β
m
线性无关(已知α
1
,α
2
,…,α
m
线性无关时).
转载请注明原文地址:https://www.kaotiyun.com/show/0Xj4777K
0
考研数学二
相关试题推荐
设f(x,y)=,其中D为正方形域0≤x≤1,0≤y≤1.
求其中D={(x,y)|0≤x≤3,0≤y≤1}.
计算曲线y=ln(1-x2)上相应于0≤x≤的一端弧的长度.
f(x)在(一∞,+∞)上连续,=+∞,且f(x)的最小值f(x0)<x0,证明:f(f(x))至少在两点处取得最小值.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,计算f(n)(2).
设3元的实二次型f=xTAx的秩为1,且A的各行元素之和为3.求一个正交变换x=Py将二次型f=xTAx化成标准;
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Oy下的标准形为y12+y22,且Q的第3列为求矩阵A;
已知下列非齐次线性方程组(I),(Ⅱ):当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
已知非齐次线性方程组554有3个线性无关的解,求a,b的值及方程组的通解.
设线性非齐次方程组Ax=(α1,α2,α3,α4)x=α5有通解k(一1,2,0,3)T+(2,一3,1,5)T.求方程组(α1,α2,α3,α4,α5)x=α5的通解.
随机试题
关于法治对经济社会发展的保障作用的说法,错误的是()。
《论语》说:“礼之用,和为贵,先王之道斯为美。”这句话道出了传统礼俗的()
帮助患者预防应对压力的方法包括
颌面部创口初期缝合最长时间为
患者男性。35岁。现脘膈痞闷,呕吐痰涎,进食发噎不利,口淡纳呆,大便时结时溏,舌体胖大,有齿痕,苔白厚腻,脉滑。其治疗方法为()
下列各项中,不属于借款人权利的是()。
解不等式组:
新的岗位会面临各种挑战,针对你报考的岗位,你认为在以后工作中遇到最大的挑战是什么?你会如何应对?
刺激一致性约束
MarriageinAncientEgyptTheancientEgyptiansheldmarriageasasacredbond.Eachpersoninafamilyplayedhisorherown
最新回复
(
0
)