首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若α1,α2,α3线性无关,那么下列线性相关的向量组是
若α1,α2,α3线性无关,那么下列线性相关的向量组是
admin
2016-10-20
39
问题
若α
1
,α
2
,α
3
线性无关,那么下列线性相关的向量组是
选项
A、α
1
,α
1
+α
2
,α
1
+α
2
+α
3
.
B、α
1
+α
2
,α
1
-α
2
,-α
3
C、 -α
1
+α
2
,α
2
+α
3
,α
3
-α
1
.
D、α
1
-α
2
,α
2
-α
3
,α
3
-α
1
.
答案
D
解析
用观察法.由
(α
1
-α
2
)+(α
2
-α
3
)+(α
3
-α
1
)=0,
可知α
1
-α
2
,α
2
-α
3
,α
3
-α
1
线性相关.故应选(D).
至于(A),(B),(C)线性无关的判断可以用秩也可以用行列式不为0来判断.
例如,(A)中r(α
1
,α
1
+α
2
,α
1
+α
2
+α
3
)=r(α
1
,α
1
+α
2
,α
3
)=r(α
1
,α
2
,α
3
)=3.
或(α
1
,α
1
+α
2
,α
1
+α
2
+α
3
)=(α
1
,α
2
,α
3
)
由行列式
≠0而知α
1
,α
1
+α
2
,α
1
+α
2
+α
3
线性无关.
转载请注明原文地址:https://www.kaotiyun.com/show/zYT4777K
0
考研数学三
相关试题推荐
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
写出过点A(2,0,0),B(0,1,0),C(0,0,4)的圆周方程.
验证下列函数满足波动方程utt=a2uxx:(1)u=sin(kx)sin(akt);(2)u=ln(x+at);(3)u=sin(x-at).
试求下列微分方程在指定形式下的解:(1)y〞+3yˊ+2y=0,形如y=erx的解;(2)x2y〞+6xyˊ+4y=0,形如y=xλ的解.
写出满足下列条件的动点的轨迹方程,它们分别表示什么曲面?(1)动点到坐标原点的距离等于它到平面z=4的距离;(2)动点到坐标原点的距离等于它到点(2,3,4)的距离的一半;(3)动点到点(0,0,5)的距离等于它到x轴的距离;(4)动点到x轴的距离
设半径为r的球的球心在半径为a的定球面上,试求r的值,使得半径为r的球的表面位于定球内部的那一部分的面积取最大值.
在“充分而非必要”、“必要而非充分”和“充分必要”三者中选择一个正确的填人下列空格内:(1)f(x)在点x。连续是f(x)在点x。可导的__________条件;(2)f(x)在点x。的左导数fˊ-(x。)及右导数fˊ+=(x。)都存在且相等是f(x)
问a,b为何值时,点(1,3)为曲线y=ax3+bx2的拐点?
设n(n≥3)阶矩阵若矩阵A的秩为n-1,则a必为()
随机试题
女性,42岁,行单侧甲状腺大部分切除术。术后4小时,病人先主诉胸闷、气急,随后出现颈部增粗,呼吸困难,发绀。问:该病人出现呼吸困难的原因是什么?
简述中国封建社会的主要矛盾和基本特点。
Weallhopehe’llsoon______hisdisappointmentandbehappyagain.
A.扶土抑木B.培土生金C.滋水涵木D.补火暖土用参苓白术散治疗肺虚,久咳,所体现的做法是
男性,60岁。咳嗽1月、咯血丝痰2周,伴消瘦,无发热、胸闷、气促,吸烟50年,20支/日。该例应首选下列哪项检查
一般用于固定标本的荧光抗体的荧光素与蛋白质结合比率(F/P)值应为
金某在因走私罪被判刑前所犯盗窃罪应当如何处理?如果金某在犯前述盗窃罪后公安机关已经立案侦查,而金某因逃往外地而未被立案的公安机关抓获,则对金某又当如何处罚?
甲盗窃黄金200两,因害怕法律制裁,将黄金密藏20年之久,甲密藏黄金的行为属于( )。
人们由于飞鸟的启发发明了飞机,这说明了原型启发的作用。
下列行政行为中,不属于行政确认的形式的是()。
最新回复
(
0
)