首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2017年] 设3阶矩阵A=(α1,α2,α3)有3个不同的特征值.且α3=α1+2α2. 证明r(A)=2;
[2017年] 设3阶矩阵A=(α1,α2,α3)有3个不同的特征值.且α3=α1+2α2. 证明r(A)=2;
admin
2021-01-19
100
问题
[2017年] 设3阶矩阵A=(α
1
,α
2
,α
3
)有3个不同的特征值.且α
3
=α
1
+2α
2
.
证明r(A)=2;
选项
答案
利用秩的定义证之. 设A的特征值为λ
1
,λ
2
和λ
3
,因A有3个不同的特征值,故A可以相似对角化,即存在可逆矩阵P,使得 P
-1
AP=[*] 因为λ
1
,λ
2
,λ
3
两两不同,所以r(A)≥2.又因α
3
=α
1
+2α
2
,所以α
1
,α
2
,α
3
线性相关,从而上r(A)<3,故r(A)=2.结论得证.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/yt84777K
0
考研数学二
相关试题推荐
设曲线y=ax2+bx+c过原点,且当0≤x≤1时,y≥0,并与x轴所围成的图形的面积为,试确定a、b、c的值,使该图形绕x轴旋转一周所得立体的体积最小。
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
求下列函数的偏导数:
早晨开始下雪整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
设(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
求下列隐函数的微分或导数:(Ⅰ)设ysinx-cos(x-y)=0,求dy;(Ⅱ)设方程确定y=y(x),求y’与y’’.
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。求曲线x=φ(
设A为n阶矩阵,证明:r(A*)=其中n≥2.
设3阶矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解.A=______.
随机试题
直流伺服电动机的工作原理和普通直流电动机相同。()
1升世界卫生组织推荐的口服补盐液中含氯化钠为1升世界卫生组织推荐的口服补盐液中含氯化钾为
面目皮肤发黄,鲜明如橘色,脘腹胀满,不思饮食,恶心呕吐,口苦,舌苔黄腻,脉濡数,可诊为( )。
A、 B、 C、 D、 C由知,s(x)是f(x)的正弦级数的和函数,故对f(x)作奇周期延拓得F(x),则间断,再由迪利克来定理,
买方未在约定期限对引进设备进行检验,视为()。
从()时期开始,佛教思想注意与中国固有文化思想相通融,为佛学思想中国化开辟了道路。
Whenitcomestoleisureactivities,Americansaren’tquitethefunseekersthey’vebeensupposedtobe.(PassageThree)
在数据库系统的内部结构体系中,索引属于()。
Youshouldspendabout20minutesonQuestions1-13,whicharebasedonReadingPassage1below.Theeco
Whentheysawthatthemodelofplanetheyhadmadereally______intothesky,thechildrencheeredup.
最新回复
(
0
)