首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
admin
2019-06-28
75
问题
设线性方程组(1)Ax=0的一个基础解系为α
1
=(1,1,1,0,2)
T
,α
2
=(1,1,0,1,1)
T
,α
3
=(1,0,1,1,2)
T
。线性方程组(2)Bx=0的一个基础解系为β
1
=(1,1,一1,一1,1)
T
,β
2
=(1,一1,1,一1,2)
T
,β
3
=(1,一1,一1,1,1)
T
。求
线性方程组(3)
的通解;
选项
答案
线性方程组(1)Ax=0的通解为x=k
1
α
1
+k
2
α
2
+k
2
α
3
;线性方程组(2)Bx=0的通解为x=l
1
β
1
+l
2
β
2
+l
3
β
3
;线性方程组(3)[*] 的解是方程组(1)和(2)的公共解,故考虑线性方程组(4)k
1
α
1
+k
2
α
2
+k
3
α
3
=l
1
β
1
+l
2
β
2
+l
3
β
3
,将其系数矩阵作初等行变换,即[*] 则方程组(4)的一个基础解系是(一2,0,2,一1,0,1)
T
。将其代入(4)得到方程组(3)的一个基础解系ξ=一2α
1
+2α
2
=一β
1
+β
3
=(0,一2,0,2,0)
T
。所以方程组(3)的通解为x=k(0,一1,0,1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/JZV4777K
0
考研数学二
相关试题推荐
求极限。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
设矩阵A=,行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值。
已知A,B为三阶非零矩阵,且A=。β1=(0,1,一1)T,β2=(0,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且AX=β3有解。求a,b的值;
设x为三维单位列向量,E为三阶单位矩阵,则矩阵E—xxT的秩为_________。
A、 B、 C、 D、 C积分区域D可表示为D={(x,y)|一1≤x≤0,一x≤y≤2一x2}∪{(x,y)|0≤x≤1,x≤y≤2一x2}.D关于y轴对称,而xy关于x为奇函数,因此
设非负函数y=y(x)(x≥0)满足微分方程xy"-y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0围成的平面区域D的面积为2,求D绕y轴旋转所得旋转体体积。
∫01arctanχdχ=_______.
设f(χ)=∫0tanχarctant2dt,g(χ)=χ→sinχ,当χ→0时,比较这两个无穷小的关系.
设f(t)=arctan(1+x2+y2)dxdy,则为().
随机试题
患者,男,45岁。右下肺肺炎入院,痰培养为耐青霉素肺炎链球菌,可能不敏感的抗菌药物是
简述良好护患沟通的作用。
求过点(一1,1,一2)并且与平面2x—y+z一3=0和平面x—y=0都平行的直线方程.
上消化道出血特征性的表现为
A.中毒性肝炎B.粒细胞下降C.血管神经性水肿D.上腹部不适等胃肠道反应E.甲状腺功能亢进症状硫脲类最重要的不良反应是
下列情形中,阻碍注册会计师保持职业怀疑的有()。
下列属于云南风味小吃的有()。
教师通过清楚而细致地演算例题来帮助学生形成智力技能的阶段属于()
发生违反《中华人民共和国义务教育法》的重大事件,妨碍义务教育实施,造成重大社会影响的,负有领导责任的人民政府或者人民政府教育行政部门负责人应当()。
IhavebeenteachingforlongerthanIcaretosay,andalwaysofferacourseforenteringfreshmen.AndI’vediscoveredsomet
最新回复
(
0
)