首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非负函数y=y(x)(x≥0)满足微分方程xy"-y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0围成的平面区域D的面积为2,求D绕y轴旋转所得旋转体体积。
设非负函数y=y(x)(x≥0)满足微分方程xy"-y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0围成的平面区域D的面积为2,求D绕y轴旋转所得旋转体体积。
admin
2018-04-14
104
问题
设非负函数y=y(x)(x≥0)满足微分方程xy"-y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0围成的平面区域D的面积为2,求D绕y轴旋转所得旋转体体积。
选项
答案
令y’=p,则y"=p’,代入微分方程,当x>0时,p’-[*]p=-2/x,解得 y’=p=e
∫1/xdx
[∫(-2/x)e
-∫1/xdx
dx+C
1
]=2+C
1
x, 则 y=2x+[*]C
1
x
2
+C
2
(x>0),其中C
1
,C
2
为任意常数。 由已知y(0)=0,有C
2
=0,于是y=2x+[*]C
1
x
2
。 由于 2=∫
0
1
y(x)dx=∫
0
1
(2x+[*]C
1
x
2
)dx=1+[*] 所以C
1
=6,故y=2x+3x
2
(x≥0)。 由于x=1/3([*]-1),0≤y≤5,故所求旋转体的体积为 V=5π-∫
0
5
πx
2
dy=5π-∫
0
5
π.1/9([*]-1)
2
dy [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qCk4777K
0
考研数学二
相关试题推荐
已知函数z=f(x,y)的全微分dz=2xdx-2ydy,并且f(1,1)=2.求f(x,y)在椭圆域D={(x,y)|x2+y2/4≤1)上的最大值和最小值.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
在曲线y=(x-1)2上的点(2,1)处作曲线的法线,由该法线、x轴及该曲线所围成的区域为D(y≥0),则区域D绕x轴旋转一周所成的几何体的体积为________.
已知函数f(x)具有二阶导数,且f(0)=1,函数y=y(x)由方程y-xey-1=1所确定.设.
计算二重积分,其中D={(x,y)|x2+y2≤x+y+1}.
(2010年试题,20)计算二重积分其中
(1999年试题,二)设f(x)是连续函数,F(x)是f(x)的原函数,则().
随机试题
下列关于指数基金的说法,不正确的是()。
为什么说意识又是社会的产物?
小儿腹泻患儿有低钾血症时其心电图主要表现是
长期低热,以午后或夜间低热为主,其病机是
A.浆液性炎B.纤维素性炎C.化脓性炎D.出血性炎E.变质性炎细菌性痢疾属于
根据《中华人民共和国刑法》的规定,下列犯罪形态适用“从一重处断”原则的有()。
“剩余价值不能从流通领域中产生,但又不能离开流通领域而产生”,这句话的意思是______。
OpenShortestPathFirst(OSPF)isa(1)_____routingalgorithmthat(2)____workdoneontheOSIIS-ISintradomainroutingproto
Areyoufacingasituationthatlooksimpossibletofix?In1969,thepollutionwasterriblealongtheCuyahogaRivernearC
A、LearnaboutthehistoryofAmericansociety.B、AppreciatethecontributionsofAfricanAmericans.C、Visitfamednationalmuseu
最新回复
(
0
)