首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
商店销售某种季节性商品,每售出一件获利500元,季度末未售出的商品每件亏损100元,以X表示该季节此种商品的需求量,若X服从正态分布N(100,4),问: (1)进货量最少为多少时才能以超过95%的概率保证供应; (2)进货量为多少时商店获
商店销售某种季节性商品,每售出一件获利500元,季度末未售出的商品每件亏损100元,以X表示该季节此种商品的需求量,若X服从正态分布N(100,4),问: (1)进货量最少为多少时才能以超过95%的概率保证供应; (2)进货量为多少时商店获
admin
2018-09-20
94
问题
商店销售某种季节性商品,每售出一件获利500元,季度末未售出的商品每件亏损100元,以X表示该季节此种商品的需求量,若X服从正态分布N(100,4),问:
(1)进货量最少为多少时才能以超过95%的概率保证供应;
(2)进货量为多少时商店获利的期望值最大.
(ψ(1.65)=0.95,ψ(0.95)=0.83,其中ψ(x)为标准正态分布函数)
选项
答案
(1)设进货量为k(件),依题意k应使 P{X≤k}≥0.95,即[*]≥0.95=ψ(1.65), 故 [*] 即进货量最少为104(件)时才能以超过95%的概率保证供应. (2)设进货量为n(件),则商品获利 [*] 已知X的概率密度为f(x),故 EY=E[g(X,n)]=∫
-∞
+∞
g(x,n)f(x)dx =∫
-∞
n
(600x—100n)f(x)dx+∫
n
+∞
500nf(x)dx =∫
-∞
n
600xf(x)dx一100n∫
-∞
n
f(x)dx—∫
-∞
n
500nf(x)dx+∫
-∞
n
500nf(x)dx+∫
n
+∞
500nf(x)dx =600∫
-∞
n
xf(x)dx一600n∫
-∞
n
f(x)dx+500n∫
-∞
+∞
f(x)dx =600∫
-∞
n
xf(x)dx一600n∫
-∞
n
f(x)dx+500n. 记 g(a)=600∫
-∞
a
xf(x)dx-600a∫
-∞
a
f(x)dx+500a, 令 g’(a)=600af(a)一600∫
-∞
a
f(x)dx一600af(a)+500=0, 解得 [*] 所以进货量为102(件)时商店获利的期望值最大.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/xtW4777K
0
考研数学三
相关试题推荐
将一颗骰子重复投掷n次,随机变量X表示出现点数小于3的次数,Y表示出现点数不小于3的次数.求3X+Y与X-3Y的相关系数.
设随机变量X和Y独立,并且都服从正态分布N(μ,σ2),求随机变量Z=min(X,Y)的数学期望.
设随机变量X服从(0,1)上的均匀分布,求下列Yi(i=1,2,3,4)的数学期望和方差:(Ⅰ)Y2=eX;(Ⅱ)Y2=-2lnX;(Ⅲ)Y3=;(Ⅳ)Y42=X2.
设随机变量X与Y相互独立同分布,且X的概率分布为,记U=max(X,Y),V=min(X,Y),试求:(Ⅰ)(U,V)的分布;(Ⅱ)E(UV);(Ⅲ)ρUV.
将一颗骰子连续重复掷4次,以X表示4次掷出的点数之和,则根据切比雪夫不等式,P{10<X<18}≥_________.
设随机变量X~E(1),记Y=max(X,1),则E(Y)=
设A是n阶矩阵,如对任何n维向量b方程组Ax=b总有解,证明方程组A*x=b必有唯一解.
设随机变量X与Y相互独立,下表列出二维随机变量(X,Y)的联合分布律及关于X和Y的边缘分布律的部分数值,试将其余的数值填入表中空白处.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设(1)f(x,y)在点(0,0)处是否连续?(2)f(x,y)在点(0,0)处是否可微?
随机试题
甲公司于2020年12月31日购入一栋办公楼,实际取得成本为3000万元。该办公楼的预计使用年限为20年,预计净残值为零,采用年限平均法计提折旧。因公司迁址,甲公司与乙公司于2022年6月30日签订租赁协议。该协议约定:甲公司将上述办公楼租赁给乙公司,租赁
总线上有数据信号、地址信号和_______信号三类信号。
正常分娩过程中。宫颈扩张减速期是指
甲机械公司向杭州市中级人民法院起诉,要求乙贸易公司归还拖欠的200万元设备款。杭州市中级人民法院受理该案之次日起,该案的一审审限即开始计算,但哪个选项不应计算在内?()
进入城建档案馆的工程档案移交程序为()。
根据增值税法律制度的规定,增值税纳税人的下列行为中,应视同销售货物的是()。
强攻战是在谈判中以绝不退让或高压的态度,迫使对方让步的策略。强攻战可以随时随地发生,却又可随时随地死而复生。强攻战的具体策略有:针锋相对、最后通牒、扮疯相、最大预算、说绝话等。根据上述定义,下列各项不能达到强攻战效果的是:
生产要素最优组合是如何确定的.它与厂商的利润最大化有何关系?
《诗经》
设
最新回复
(
0
)