首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<(x>1).
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<(x>1).
admin
2018-06-27
59
问题
设f(x)在[1,+∞)可导,
[xf(x)]≤-kf(x)(x>1),在(1,+∞)的
子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<
(x>1).
选项
答案
已知xf’(x)+(k+1)f(x)≤0(x>1),在(1,+∞)[*]子区间上不恒为零,要证f(x)x
k+1
<M(x>1).令F(x)=f(x)x
k+1
[*]F’(x)=x
k+1
f’(x)+(k+1)x
k
f(x)=x
k
[xf’(x)+(k+1)f(x)]≤0(x>1),在(1,+∞)[*]子区间上不恒为零,又F(x)在[1,+∞)连续[*]F(x)在[1,+∞)单调下降[*]F(x)<F(1)=f(1)≤M (x>1).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/xak4777K
0
考研数学二
相关试题推荐
设函数f(x)在x=1的某邻域内连续,且有求f(1)及f’(1);
设f(x,y)为连续函数,且,其中D:u2+v2≤a2(a>0),则f(x,y)=___________.
下列矩阵中属于正定矩阵的是
已知累次积分其中a>0为常数,则,可写成
设f(x)在(一∞,+∞)内一阶可导,求证:若f(x)在(一∞,+∞)内二阶可导,又存在极限,则存在ξ∈(一∞,+∞),使得f’’(ξ)=0.
设f(x)在(一∞,+∞)是连续函数,求初值问题的解y=φ(x);
过原点作曲线的切线L,该切线与曲线及y轴围成平面图形n.求D绕y轴旋转一周所得旋转体体积V.
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组(α1,α2)x=β有唯一解,并求该解;
设A的特征值,特征向量;
设有8只球,其中自球和黑球各4只,从中任取4只放人甲盒,余下的4只放入乙盒,然后分别在两盒中任取1只球,颜色正好相同.试问放人甲盒的4只球中有几只白球的概率最大?
随机试题
初产妇,33岁,妊娠39周。不规律宫缩3小时。B超检查:胎头双顶径为10cm,该孕妇空腹血糖为8.2mmol/L。该孕妇最适合的分娩方式是
久服较大剂量后,每易引起浮肿的药物是()
下列有关收入确认的表述中,符合准则规定的有()。
夏天,打开冰箱冷冻室的门,常常看到冷冻室中冒出一股白雾,这是()。
商业银行通过()职能实现资本的融通。
中国共产党人第一篇反对教条主义的重要文献是()。
在深化机构和行政体制改革中,要深化事业单位改革,强化(),推进政事分开、事企分开、管办分离。
根据所给资料,下列说法正确的是:
在同质预期的情况下,所有人将()。
检测系统X和Y所依据的原理不同,却都能检测出所有的产品缺陷,但它们也都会错误地淘汰3%的无缺陷的产品。由于误测造成较高的检测成本,所以通过安装这两套系统,而不是其中的一套系统,而且只淘汰两套系统都认为有缺陷的产品,这样就会省钱。以上论证需要下面哪项
最新回复
(
0
)