首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn-r=ξn-r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ1η1+μ2η2+…+μ
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn-r=ξn-r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ1η1+μ2η2+…+μ
admin
2017-06-14
72
问题
设η
*
是非齐次方程组AX=b的一个特解,ξ
1
,ξ
2
,…,ξ
n-r
是对应齐次方程组AX=0的基础解系.令η
0
=η
*
,η
1
=ξ
1
+η
*
,η
2
=ξ
2
+η
*
,…,η
n-r
=ξ
n-r
+η
*
.证明:非齐次方程的任一解η都可表示成η=μ
0
η
0
+μ
1
η
1
+μ
2
η
2
+…+μ
n-r
η
n-r
,其中μ
0
+μ
1
+μ
2
+…+μ
n-r
=1.
选项
答案
AX=b的任一解η可表示成 η=η
*
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=η
*
(1-k
1
-k
2
-…-k
n-r
)+k
1
(ξ
1
+η
*
)+k
2
(ξ
2
+η
*
)+…+k
n-r
(ξ
n-r
+η
*
). 记 η=μ
0
η
0
+μ
1
η
1
+μ
2
η
2
+…+μ
n-r
η
n-r
, 其中μ
0
+μ
1
+…+μ
n-r
=1-k
1
-k
2
-…-k
n-r
+k
1
+k
2
+…+k
n-r
=1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/xZu4777K
0
考研数学一
相关试题推荐
π
A、 B、 C、 D、 C
12a
微分方程xy’+2y=xlnx满足y(1)=-1/9的解为__________.
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是
设A,B为满足AB=0的任意两个非零矩阵,则必有
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设点M(ξ,η,ζ)是椭球面上第一象限中的点,S是该椭球面点M处的切平面被三个坐标面所截得的三角形上侧,求(ξ,η,ζ),使曲面积分为最小,并求此最小值.
随机试题
TheChineseexpertmadeareportontheworldeconomybasedonhisinvestigation.
根据“联环同盟”协定,下列属于路透社势力范围的是()
A.X连锁无丙种球蛋白血症B.先天性胸腺发育不良C.Wiskott—Aldrich综合征D.选择性IgA缺陷症E.严重联合免疫缺陷病出生后1--2个月后起病,对细菌、病毒、真菌的易感性均高,应为
ERP系统中的会计信息系统包括财务会计和管理会计两个子系统。()
根据《人民币银行结算账户管理办法》的规定,存款人可以出租、出借银行结算账户。()
“西气东输”管道线路的走向所考虑的主要经济因素是()。
否定之否定规律揭示了事物发展的()的过程。
在阿希有关印象形成的经典实验中,属于中心特征的是()。
在C/S体系结构中,客户端连接数据不需要指定的是(51)。
数据的管理方法主要有()。
最新回复
(
0
)