首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T 是方程组 Ax=0的一一个基础解系,则A*x=0的基础解系可为
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T 是方程组 Ax=0的一一个基础解系,则A*x=0的基础解系可为
admin
2013-04-04
48
问题
设A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,A
*
为A的伴随矩阵.若(1,0,1,0)
T
是方程组
Ax=0的一一个基础解系,则A
*
x=0的基础解系可为
选项
A、α
1
,α
3
.
B、α
1
,α
2
.
C、α
1
,α
2
,α
3
.
D、α
2
,α
3
,α
4
.
答案
D
解析
本题没有给出具体的方程组,因而求解应当由解的结构、由秩开始.
因为Ax=0只有1个线性无关的解,即n-r(A)=1,从而r(A)=3.那么r(A
*
)=1 n-r(A
*
)=4-1=3.故A
*
x=0的基础解系中有3个线性无关的解,可见选项(A)、(B)均错误.
再由A
*
A=丨A丨E=0,知A的列向量全是A
*
x=0的解,而秩r(A)=3,故A的列向量中必有3个线性无关.
最后,因向量(1,0,1,0)
T
是Ax=0的解,故
=(α
1
,α
2
,α
3
,α
4
)
即α
1
+α
3
=0,
说明α
1
,α
3
线性相关α
1
,α
2
,α
3
线性相关,由此可知选项(C)错误.从而应选(D).
用排除法.求出r(A
*
)=3,排除选项(A),(B);由α
1
+α
3
=0,即α
1
,α
3
线性相关.
转载请注明原文地址:https://www.kaotiyun.com/show/aH54777K
0
考研数学一
相关试题推荐
若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P一1AP=Λ.
A、 B、 C、 D、 A
[2015年]设矩阵.若集合Ω={1,2},则线性方程组AX=b有无穷多解的充分必要条件为().
设y=y(z)是二阶常系数微分方程y"+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限()
(2000年试题,十三)已知向量组β1=与向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
(2011年试题,三)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T,不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,α)T线性表示.求α的值;
设向量组试问:(1)a为何值时,向量组线性无关?(2)a为何值时,向量组线性相关,此时求齐次线性方程组x1α1+x2α2+x3α3+x4α4=0的通解.
设n阶矩阵A的各行元素之和均为0,且A的伴随矩阵A*≠O,则线性方程组Ax=0的通解为__________________.
利用变量代换u=x,v=,可将方程化成新方程().
随机试题
社会主义道德以为人民服务为核心,其原因在于()
下列应选用单侧检验的情况是
A、芳香水剂B、溶液剂C、胶浆剂D、乳剂E、混悬剂难溶于水的固体药物以微粒分散在液体介质中形成的制剂属于()
在设计()装置时,必须使其在发生任何故障时,都不使人员暴露在危险之中。
当银行业从业人员对所在机构的处分有异议时,采取的正确行为是()。
违反协助执行的后果不包括()。
(x+)5(x∈R)展开式中x3的系数为10,则实数a等于()
有意注意
以太网交换机中的端口/MAC地址映射表是()。
There,inthemud,werefootprints—footprints______(几乎是正常人脚的十倍大).
最新回复
(
0
)