首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线(0<a<4)与x轴、y轴所围成的图形绕x轴旋转一周所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
设曲线(0<a<4)与x轴、y轴所围成的图形绕x轴旋转一周所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
admin
2019-09-04
89
问题
设曲线
(0<a<4)与x轴、y轴所围成的图形绕x轴旋转一周所得立体体积为V
1
(a),绕y轴旋转所得立体体积为V
2
(a),问a为何值时,V
1
(a)+V
2
(a)最大,并求最大值.
选项
答案
曲线与x轴和y轴的交点坐标分别为(a,0),(0,b),其中b=4-a.曲线可化为 y=[*],对任意的[x,x+dx][*][0,a], dV
2
=2πx.ydx=2πx[*] 于是V
2
=2π∫
0
a
x.[*]a
2
b,根据对称性,有V
1
=[*]ab
2
. 于是V(a)=V
1
(a)+V
2
(a)=[*]a(4-a). 令V’(a)=[*](4-2a)=0[*]a=2,又V’’(2)<0,所以a=2时,两体积之和最大,且最大值为V(2)=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/x4J4777K
0
考研数学三
相关试题推荐
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并在此时求其通解.
设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)可由α1,α2,α3惟一地线性表示,并求出表示式;(3
已给线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多解?在方程组有无穷多解的情形下,试求出一般解.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,a+2)T.α4=(-2,-6,10,a)T.(1)a为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;(2)
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记f(X)=XTAX/XTX,X∈Rn,X≠0求二元函数f(x,y)=(x2+y2≠0)的最大值及最大值点.
设A是n阶可逆方阵,将A的第i行与第j行对换后所得的矩阵记为B.求AB-1.
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0)上的最大值与最小值.
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
G={(x,y)|x2+y2≤r2}是以原点为圆心,半径为r的圆形区域,而随机变量X和Y的联合分布是在区域G上的均匀分布.试确定随机变量X和Y的独立性和相关性.
求(|x|+|y|)dxdy.其中D是由曲线xy=2,直线y=x-1,y=x+1所围成的区域.
随机试题
患者,女,29岁。因全身浮肿就诊,经系统检查诊断为肾病综合征,中医诊断为肾阳亏虚证水肿,采用中西药综合治疗。结合病情,既符合中医辨证、又能增加西药利尿效果的方剂是
有腐蚀性的调料,应使用玻璃、陶瓷等耐腐蚀的容器。()
下列选项中不是栓剂质量检查的项目的是
施工过程中耗费的构成工程实体或有助于工程实体形成的各项费用支出,称为()。
甲以协议转让方式取得乙上市公司7%的股份,之后又通过交易所集中竞价交易陆续增持乙公司5%的股份。根据证券法律制度的规定,甲需要进行权益披露的时点分别是()。
铃木教学法在具体实施中有哪些特点?
在社会主义市场经济中,宏观调控与微观搞活的关系是()。
当前,海水温度上升引发了一系列白化事件,研究人员非常担心全球珊瑚的命运。研究人员发现,虫黄藻能够利用光合作用产生自己及其寄主所需的养分。当温度较高的海水导致珊瑚礁排出名为虫黄藻的共生藻类时,失去彩色藻类的珊瑚逐渐变为白色,白化现象便发生了。如果白化现象持续
将考生文件夹下QIU\LONG文件夹中的文件WATER.FOX设置为只读属性。
Shehas______somebrilliantschemetodoubleherincome.
最新回复
(
0
)