首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时, (1)β不能由α1,α2,α3线性表示; (2)可由α1,α2,α3惟一地线性表示,并求出表示式; (3
设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时, (1)β不能由α1,α2,α3线性表示; (2)可由α1,α2,α3惟一地线性表示,并求出表示式; (3
admin
2018-07-26
92
问题
设有向量α
1
=(1,2,0)
T
,α
2
=(1,a+2,-3a)
T
,α
3
=(-1,-b-2,a+2b)
T
,β=(1,3,-3)
T
.试讨论当a、b为何值时,
(1)β不能由α
1
,α
2
,α
3
线性表示;
(2)可由α
1
,α
2
,α
3
惟一地线性表示,并求出表示式;
(3)β可由α
1
,α
2
,α
3
线性表示,但表示式不惟一,并求出表示式.
选项
答案
设有一组数x
1
,x
2
,x
3
,使得 x
1
α
1
+x
2
α
2
+x
3
α
3
=β (*) 对方程组(*)的增广矩阵施行初等行变换: [*] (1)当a=0,b为任意常数时,有 [*] 可知r(A)≠r([*]),故方程组(*)无解,β不能由α
1
,α
2
,α
3
线性表示. (2)当a≠0,且a≠b时,r(A)=r([*])=3,方程组(*)有唯一解:x
1
=1-[*],x
2
=1/a,x
3
=0.故此时β可由α
1
,α
2
,α
3
唯一地线性表示为:β=(1-[*]α
2
. (3)当a=b≠0时,对[*]施行初等行变换: [*] 可知r(A)=r([*])=2,故方程组(*)有无穷多解,通解为:x
1
=1-[*]+C,x
3
=C,其中C为任意常数.故此时β可由α
1
,α
2
,α
3
线性表示,但表示式不唯一,其表示式为β=(1-[*]+C)α
2
+Cα
3
,其中C为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/RTW4777K
0
考研数学三
相关试题推荐
求A=的特征值与特征向量.
设二维离散型随机变量只取(-1,-1),(-1,0),(1,-1),(1,1)四个值,其相应概率分别为(Ⅰ)求(X,Y)的联合概率分布;(Ⅱ)求关于X与关于Y的边缘概率分布;(Ⅲ)求在Y=1条件下关于X的条件分布与在X=1条件下关于Y的条件分布.
已知A是n阶对称矩阵.B是n阶反对称矩阵,证明A-B2是对称矩阵.
设0<x1<x2,f(x)在[x1,x2]可导,证明:在(x1,x2)内至少存在一个c,使得
求y’’+4y’+4y=eax的通解,其中a为常数.
求下列微分方程的通解:(Ⅰ)(Ⅱ)xy+2y=sinx;(Ⅲ)ydx-2(x+y4)dy=0;(Ⅳ)y’+xsin2y=x3cos2y.
已知α1=(1,-1,1)T,α2=(1,t,-1)T,α3=(t,1,2)T,β=(4,t2,-4)T,若β可以由α1,α2,α3线性表出且表示法不唯一,求t及β的表达式.
设A是m×n矩阵,B是n×P矩阵,如AB=0,则r(A)+r(B)≤n.
设总体X的分布律为P(x=i)=(i=1,2,…,θ),X1,X2,…,Xn为来自总体的简单随机样本,则θ的矩估计量为________(其中θ为正整数).
设三阶方阵A与B相似,且|2E+A|=0。已知λ1=1,λ2=—1是方阵B的两个特征值,则|A+2AB|=________。
随机试题
下列不属于组织常用的微观细分变量的是()
一个数码率为1411200b的全频带波形声音,1小时的数据量为________。
以下关于钉洞固位形的说法中错误的是
塑料绝缘导线包括聚氯乙烯绝缘导线、( )和丁腈聚氯乙烯复合物绝缘软线。
按设备在生产工艺过程中的作用原理分类,蒸煮锅属于()。
某公司主营业务是开发面向金融行业的企业内部管理信息系统,在全国主要城市市场占有率达到50%以上,有2家实力稍弱的竞争对手。随着国家相关政策的出台,金融行业加强内部监管变得越来越重要。公司的基本情况如下:①公司财务经营状况较好,近年来营业额和利润率逐年增长,
MasstransportationrevisedthesocialandeconomicfabricoftheAmericancityinthreefundamentalways.Itcatalyzedphysical
Sincetheweatherisfinewe______walkforawhile.
TheMinistryofEducationistoupgradeteachingmethodsand【B1】______incollegesanduniversitiesthroughoutthecountry.Thea
WhilepopularintheU.S.,theAprilFool’sDaytraditionisevenmoreprevalent(流行的)inEuropeancountries,suchasFranceand
最新回复
(
0
)