首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵 已知tr(A)=a≠0.证明:矩阵A相似于对角矩阵.
设n阶矩阵 已知tr(A)=a≠0.证明:矩阵A相似于对角矩阵.
admin
2018-08-22
67
问题
设n阶矩阵
已知tr(A)=a≠0.证明:矩阵A相似于对角矩阵.
选项
答案
设α=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…,b
n
]
T
,则矩阵A=αβ
T
. 于是 A
2
=AA=(αβ
T
)(αβ
T
)=(β
T
α)αβ
T
[*] 设λ是A的特征值,ξ是对应的特征向量,则 A
2
ξ=aAξ,λ
2
ξ=aλξ,(λ
2
一aλ)ξ=0. 由于ξ≠0,故有λ(λ一a)=0.所以,矩阵A的特征值是0或a.又因为 [*] 所以λ
1
一a是A的1重特征值,λ
2
=λ
3
=…=λ
n
=0是A的n一1重特征值. 对于特征值λ
2
=λ
3
=…=λ
n
=0,齐次线性方程组(0E一A)x=0的系数矩阵的秩 r(0E一A)=r(一A)=r(A)=r(αβ
T
)≤min{r(α),r(β
T
)}=1. 又因为[*]故a
i
b
i
(i=1,2,…,n)不全为零.由此可知r(A)≥1. 所以r(0E—A)=1.因此,矩阵A的属于n一1重特征值0的线性无关的特征向量个数为n一1.从而,A有n个线性无关的特征向量,故A相似于对角矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/wTj4777K
0
考研数学二
相关试题推荐
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值.
已知非齐次线性方程组A3×4X=b①有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是______.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4线性相关;(2)a为何值时,向量组α1,α2,α3,α4线性
问λ为何值时,线性方程组有解,并求出解的一般形式.
设f(x)=x2+ax+b,证明:|f(1)|,|f(3)|,|f(5)|中至少有一个不小于2.
设A,B都是n阶对称阵,已知E+AB不可逆,证明:E+BA也不可逆.
设4阶行列式的第2列元素依次为2,m,k,3,第2列元素的余子式依次为1,一1,1,一1,第4列元素的代数余子式依次为3,1,4,2.且行列式的值为1,求m,k.
设则()
(2000年)设函数S(χ)=∫0χ|cost|dt(1)当n为正整数,且nπ≤χ<(n+1)π时,证明2n≤S(χ)<2(n+1).(2)求
若二阶常系数齐次线性微分方程y"+py’+qy=0的一个特解为y=2excosx,则微分方程y"+py’+qy=exsinx的特解形式为().
随机试题
主张心理学应该研究意识的功能和目的,而不是它的结构;认为意识像流水一样是连续性的,提出“意识流”观点的心理学流派是()
组织的特征包括()
美国中央银行是()
脊髓半侧损害综合征常见于
消化性溃疡外科治疗的理论基础最终在于
货币政策工具可分为一般性政策工具(包括直接信用控制、间接信用指导等)和选择性政策工具(包括法定存款准备金率、再贴现政策、公开市场业务)。( )
TCP/IP体系结构中的TCP和IP所提供的服务分别为()。
简述地理教学过程的基本规律。
把黑桃、红桃、方片、梅花四种花色的扑克牌按黑桃10张、红桃9张、方片7张、梅花5张的顺序循环排列。问第2015张扑克牌是什么花色?
∫dx/xlnx(lnlnx+1)2=________.
最新回复
(
0
)