首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1=0,当n≥1时,an+1=2一cosan,证明:数列{an}收敛,并证明其极限值位于区间(,3)内.
设a1=0,当n≥1时,an+1=2一cosan,证明:数列{an}收敛,并证明其极限值位于区间(,3)内.
admin
2015-08-14
77
问题
设a
1
=0,当n≥1时,a
n+1
=2一cosa
n
,证明:数列{a
n
}收敛,并证明其极限值位于区间(
,3)内.
选项
答案
设f(x)=2一cos x,则a
n+1
=f(a
n
),有f’(x)=sin x,所以f(x)在[0,3]上单增.由于a
1
=0,a
2
=2一cos a
1
=1,即a
1
<a
2
≤3,由于函数f(x)在[0,3]上单调增加,所以f(a
1
)<f(a
2
)≤f(3),即a
2
<a
3
≤3,从而有a
1
<a
2
<a
3
<a
3
<…<a
n
<a
n+1
<…≤3. 于是可知数列{a
n
}单调增加且有上界3,所以数列{a
n
}收敛.设其极限为A(A≤3),即[*]=A,则必有[*]=A. 在a
n+1
=f(a
n
)两边同取n→∞时的极限,有A=f(A),即A=2一cos A. 记g(x)=x一2+cos x,则上述数列的极限值A,就是方程g(x)=0的解. 由于函数g(x)在[0,3]上连续,在(0,3)内可导,且有g’(x)=1一sin x≥0,所以函数g(x)在[0,3]上单调增加.由于 g(3)=1+cos 3>0,[*]所以方程g(x)=0在区间[*]内的解存在且唯一,证毕.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/R034777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,证明:r(A*)=
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明:PQ可逆的充分必要条件是αTA-1α≠b.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(2)设α1=,α2=,β1=,β2=求出可由两组向量同时线性表示的向量.
设A为n阶矩阵.若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,……,Ak-1α线性无关.
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是可逆.
证明:r(A)=r(ATA).
随机试题
今有人于此,少见黑曰黑,多见黑曰白,则以此人为不知白黑之辩矣;少尝苦日苦,多尝苦曰甘,则必以此人为不知甘苦之辩矣。今小为非,则知非之;大为非攻国,则不知非,从而誉之,谓之义;此可谓知义与不义之辩乎?是以知天下之君子也,辩义与不义之乱也。(《墨子》)这段
带下增多,绵绵不断,色白或淡黄,质黏稠,无臭味,面色萎黄,神疲倦怠。舌质淡,苔闩或腻,脉缓弱,治疗应首选的方剂是()
下列叙述中有误的是()。
下列各项中,关于结构构件混凝土强度的取样与试件留置规定,叙述正确的是( )。
E公司生产、销售一种产品,该产品的单位变动成本是60元,单位售价是80元。公司目前采用30天按发票金额付款的信用政策,80%的顾客(按销售量计算,下同)能在信用期内付款,另外20%的顾客平均在信用期满后20天付款,逾期应收账款的收回需要支出占逾期账款5%的
某国有一家非常受欢迎的冰淇淋店,最近将一种冰淇淋的单价从过去的1.80元提到2元,销售仍然不错。然而,在提价一周之内,几个雇员陆续辞职不干了。下列哪项最能解释上述现象?
Asiftheyneededanymoreexcuse,newresearchsuggestsmenneedtheirsleepifthey’retolivealonglife.Women,ontheothe
Geographyisthestudyoftherelationshipbetweenpeopleandtheland.Geographerscompareandcontrastvariousplacesonthee
TheStockMarketWhenanewcompanyisorganizedandsharesaresold,itisnothardtodeterminethevalueofeachshare:al
TheUnitedStateshasamajorracialproblemonitshands.True,Britainisfacingasimilarproblem,butforthetimebeingit
最新回复
(
0
)