首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 令矩阵B=(α1,α2,α3,b+α3),证明方程组Bx=α1-α2有无
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 令矩阵B=(α1,α2,α3,b+α3),证明方程组Bx=α1-α2有无
admin
2019-12-26
77
问题
设矩阵A=(α
1
,α
2
,α
3
),其中α
1
,α
2
,α
3
是4维列向量,已知非齐次线性方程组Ax=b的通解为
x=k(1,-2,3)
T
+(1,2,-1)
T
,k为任意常数.
令矩阵B=(α
1
,α
2
,α
3
,b+α
3
),证明方程组Bx=α
1
-α
2
有无穷多组解,并求其通解.
选项
答案
因 [*] 故r(α
1
,α
2
,α
3
,b+α
3
)=r(α
1
,α
2
,α
3
,b+α
3
,α
1
-α
2
)=2<4,即非齐次方程组Bx=α
1
-α
2
有无穷多组解. 因 [*] 故η
*
=(1,-1,0,0)
T
为Bx=α
1
-α
2
的一个特解.又 [*] 由于r(α
2
,α
3
)=2,所以Bx=0与[*]同解,容易求得[*]的通解为x=k
1
(1,-2,3,0)
T
+k
2
(0,4,-3,-1)
T
,其中k
1
,k
2
为任意常数.故Bx=α
1
-α
2
的通解为 x=k
1
(1,-2,3,0)
T
+k
2
(0,4,-3,-1)
T
+(1,-1,0,0)
T
,其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/wJD4777K
0
考研数学三
相关试题推荐
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,7),则该向量组的秩为_______.
=________.
设A=E+αβT,其中α,β均为n维列向量,αTβ=3,则|A+2E|=_________.
已知事件A、B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为________。
已知yt=et是差分方程yt+1+ayt-1=2et的一个特解,则a=_______.
设f(x)=在x=0连续,则常数a与b满足的关系是_______.
设随机变量X服从参数为1的指数分布,随机变量函数Y=1—e-x的分布函数为FY(y),则=______.
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“PQ表示可由性质
设f(x)在x=a处的左右导数都存在,则f(x)在x=a处().
(1996年)设某种商品的单价为P时,售出的商品数量Q可以表示成.其中a、b、c均为正数,且a>bc.1)求P在何范围变化时,使相应销售额增加或减少;2)要使销售额最大,商品单价P应取何值?最大销售额是多少?
随机试题
欧阳修的文学创作中成就最高的是()
A.肉芽肿B.肉芽组织C.炎性息肉D.炎性假瘤由新生毛细血管、成纤维细胞和炎性细胞形成的病灶称为
王女士,第一胎,孕40周,规律宫缩17小时,宫口开大4cm,胎心150次/分,产妇一般情况好,宫缩较初期间歇时间长,约10分钟一次,持续时间30秒,宫缩时子宫不硬,正确的处理是
皮质型感觉障碍的特点是
当用冷拉方法调直钢筋时()钢筋的冷拉率不宜大于1%。
身体言语包括()。
数字水印技术是将一些标识信息(即数字水印)直接嵌入数字载体(包括多媒体、文档、软件等)当中,但不影响原载体的使用价值,也不容易被人的知觉系统(如视觉或者听觉系统)觉察或者注意到。目前的数字水印包括()。
近年来,生物燃料需求迅速增加。2000年至2007年全球乙醇产量增长了两倍,到2017年其产量还会再翻一番,生物柴油的产量10年内也将增长一倍多。这些生物燃料是由玉米等谷物、糖类和油料作物生产的,因此其产量的扩大必然导致相关农作物价格的飙升。如果上述观点正
下列属于不合法的C语言整型常量的选项是()。
WhichofthefollowingitalicizedphrasesisINCORRECT?
最新回复
(
0
)