首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.试求: (Ⅰ)随机检验一箱产品,它能通过验收的概率p;
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.试求: (Ⅰ)随机检验一箱产品,它能通过验收的概率p;
admin
2016-10-26
59
问题
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.试求:
(Ⅰ)随机检验一箱产品,它能通过验收的概率p;
(Ⅱ)检验10箱产品通过率不低于90%的概率q.
选项
答案
(Ⅰ)记B=“任取一件产品为正品”,[*]=“任取一件产品为次品”,则A=BA∪[*],由题设知P(A|B)=1一0.02=0.98,P(A|[*]=0.1,所以 P=P(A)=P(BA)+[*] =0.98P(B)+[1一P(B)]×0.1=0.1+0.88P(B). 显然P(B)与该箱产品中有几件次品有关,为计算P(B),我们再次应用全概率公式.若记C
i
=“每箱产品含i件次品”(i=0,l,2),则C
0
,C
1
,C
2
是一完备事件组,P(C
i
)=[*],故B=C
0
B∪C
1
B∪C
2
B,且 P(B)=P(C
0
)P(B|C
0
)+P(C
1
)P(B|C
1
)+P(C
2
)P(B|C
2
) [*] 所以 p=0.1+0.88×0.9=0.892. (Ⅱ)如果用X表示检验10箱被接收的箱数,则通过率为[*],我们要求的概率q=P[*]≥0.9}= P|X≥9},其中X是10次检验事件A发生的次数,X~B(10,0.892),故 q=P{X≥9}=P{X=9}+P{X=10}=10×0.892
9
×0.108+0.892
10
≈0.705.
解析
如果记A=“一箱产品能通过验收”,则p=P(A).事件A等价于“在10件产品中任取一件检验结果为正品”,A的发生与其前题条件“取出产品是正品还是次品”有关,因此我们用全概率公式计算P(A).
转载请注明原文地址:https://www.kaotiyun.com/show/w1u4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 A
A、 B、 C、 D、 D
从5个数:1,2,3,4,5中任取3个数,再按从小到大排列,设X表示中间那个数,求X的概率分布.
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
已知某产品的边际成本和边际收益函数分别为Cˊ(q)=q2-4q+6,Rˊ(q)=105—2q,固定成本为100,其中q为销售量,C(q)为总成本,R(q)为总收益,求最大利润.
已知函数y=sinx的图形,作函数y=2sin﹙2x-π/2﹚的图形.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的最大似然估计量.
使函数f(x)=x3+ax+b在区间(-∞,+∞)内只有一个零点x0(且x0<0)的常数a,b的取值范围是
随机试题
肌梭感受器的适宜刺激是
苯甲酸钠的鉴别试验包括
血胸进行性出血的征象不包括
下列关于董事会每届任期的说法中,正确的是()。
消费型增值税的特征包括()。
白酒包装物押金的消费税和增值税如何进行相关的会计处理?
对某生产事故原因的民意调查中,70%的人认为是设备故障,30%的人认为是违章操作,25%的人认为原因不清,需要深入调查。以下哪一项最能合理地解释上述看来矛盾的陈述?
简述韩愈《师说》中的教育思想。
为了在今天的社会中成功,你必须有大学文凭。对此持怀疑态度的人认为,有许多人高中都没有上完,但他们却很成功。不过,这种成功只是表面的,因为没有大学文凭,一个人是不会获得真正成功的。以下哪项最能说明上述论证中所存在的漏洞?
下列循环能正常结束的是()。
最新回复
(
0
)