首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.试求: (Ⅰ)随机检验一箱产品,它能通过验收的概率p;
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.试求: (Ⅰ)随机检验一箱产品,它能通过验收的概率p;
admin
2016-10-26
76
问题
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.试求:
(Ⅰ)随机检验一箱产品,它能通过验收的概率p;
(Ⅱ)检验10箱产品通过率不低于90%的概率q.
选项
答案
(Ⅰ)记B=“任取一件产品为正品”,[*]=“任取一件产品为次品”,则A=BA∪[*],由题设知P(A|B)=1一0.02=0.98,P(A|[*]=0.1,所以 P=P(A)=P(BA)+[*] =0.98P(B)+[1一P(B)]×0.1=0.1+0.88P(B). 显然P(B)与该箱产品中有几件次品有关,为计算P(B),我们再次应用全概率公式.若记C
i
=“每箱产品含i件次品”(i=0,l,2),则C
0
,C
1
,C
2
是一完备事件组,P(C
i
)=[*],故B=C
0
B∪C
1
B∪C
2
B,且 P(B)=P(C
0
)P(B|C
0
)+P(C
1
)P(B|C
1
)+P(C
2
)P(B|C
2
) [*] 所以 p=0.1+0.88×0.9=0.892. (Ⅱ)如果用X表示检验10箱被接收的箱数,则通过率为[*],我们要求的概率q=P[*]≥0.9}= P|X≥9},其中X是10次检验事件A发生的次数,X~B(10,0.892),故 q=P{X≥9}=P{X=9}+P{X=10}=10×0.892
9
×0.108+0.892
10
≈0.705.
解析
如果记A=“一箱产品能通过验收”,则p=P(A).事件A等价于“在10件产品中任取一件检验结果为正品”,A的发生与其前题条件“取出产品是正品还是次品”有关,因此我们用全概率公式计算P(A).
转载请注明原文地址:https://www.kaotiyun.com/show/w1u4777K
0
考研数学一
相关试题推荐
-3
求下列有理函数不定积分:
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过Ⅱ表示为b2=________.
设函数f(x)在(-∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d),记证明曲线积分I与路径无关;
设Г:x=x(t),y=y(t)(α<t<β)是区域D内的光滑曲线,即x(t),y(t),(α,β)有连续的导数且xˊ2(t)+yˊ2(t)≠0,f(x,y)在D内有连续的偏导数,若Po∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点Po沿Γ的切线
设其中g(x)有二阶连续导数,且g(0)=1,gˊ(0)=-1.(I)求fˊ(x);(Ⅱ)讨论fˊ(x)在(-∞,+∞)上的连续性.
设f(x)在(a,b)内连续,若存在x1,x2∈(a,b),x1<x2,使得f(x1)f(x2)<0,证明f(x)在(a,b)内至少有一个零点.
求极限1/x.
设f(x)=xe2x一2x—cosx,讨论它在区间(一∞,+∞)内零点的个数.
f(x)=一cosπx+(2x一3)3+在区间(-∞,+∞)上的零点个数()
随机试题
Horner综合征
2019年3月6日专利申请人李某收到了办理专利权授权登记手续通知书,李某逾期未办理登记手续,之后国家知识产权局于2019年7月9日向李某发出了视为放弃取得专利权的权利通知书,但该通知书由于地址不详被退回,国家知识产权局于2019年7月29日公告送达。下列说
当调强束照射且射野数很多时,射野可以_____,这样可以较好地控制靶区的剂量分布
属于压缩关键工作持续时间的经济措施的是()。
临时用电工程检查的内容包括()。
下列不是PowerPoint视图方式的是()。
互斥方案,是指互相关联、互相排斥的方案,即一组方案中的各个方案彼此可以相互代替,采纳方案组中的某一方案,就会自动排斥这组方案中的其他方案。根据上述定义,下列不属于互斥方案的是:
“有法可依、有法必依、执法必严、违法必究”是法制四个缺一不可的要素,这四个要素的实质是()。
设f(χ)在[0,1]上连续,在(0,1)内可导,且∫01f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫0ξf(t)dt.
Recently,somepeopleareinterestedinnaturalfoodsbecause______.Inthebatteryfarmthechickensarefedonfoodwhich__
最新回复
(
0
)