首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,P为3阶可逆矩阵,且.若P=(a1,a2,a3),Q= (a1+a2,a2,a3),则Q-1AQ=【 】
设A为3阶矩阵,P为3阶可逆矩阵,且.若P=(a1,a2,a3),Q= (a1+a2,a2,a3),则Q-1AQ=【 】
admin
2019-03-11
73
问题
设A为3阶矩阵,P为3阶可逆矩阵,且
.若P=(a
1
,a
2
,a
3
),Q= (a
1
+a
2
,a
2
,a
3
),则Q
-1
AQ=【 】
选项
A、
B、
C、
D、
答案
B
解析
解1
其中,矩阵
,易求出
于是,Q
-1
AQ=(PM)
-1
A(PM)=M
-1
(P
-1
AP)M
因此选(B).
解2 已知A(a
1
,a
2
,a
3
)=(a
1
,a
2
,a
3
)
<=>(Aa
1
,Aa
2
,Aa
3
)=(a
1
,a
2
,2a
3
)<=>Aa
1
=a
1
,Aa
2
=a
2
,Aa
3
=2a
3
=>A(a
1
+a
2
)=Aa
1
+Aa
2
=a
1
+a
2
=>AQ=A(a
1
+a
2
,a
2
,a
3
)=(A(a
1
+a
2
),Aa
2
,Aa
3
)=(a
1
+a
2
,a
2
,2a
3
)=(a
1
+a
2
,a
2
,a
3
)两端左乘Q
-1
,得Q
-1
,故选(B).
解3 由已知A相似于对角矩阵diag(1,1,2),知a
1
,a
2
,a
3
是A的3个线性无关特征向量,且依次属于特征值1,1,2.a
1
+a
2
≠0(否则a
1
,a
2
线性相关,与a
1
,a
2
,a
3
线性无关矛盾),且A(a
1
+a
2
)一Aa
1
+Aa
2
=a
1
+a
2
,因此a
1
+a
2
是A的属于特征值1的一个特征向量.
从而知a
1
+a
2
,a
2
,a
3
是A的3个线性无关特征向量,且依次属于特征值1,1,2,因此利用矩阵相似对角化可写出 (a
1
+a
2
,a
2
,a
3
)
-1
A(a
1
+a
2
,a
2
,a
3
)=diag(1,1,2),即Q
-1
AQ=diag(1,1,2).因此选(B).
本题主要考查矩阵乘法、特则是矩阵乘法的按列表示的应用.解1中矩阵M是一个第3类初等矩阵,求其逆阵可以直接利用初等矩阵的求逆阵公式.
本题中,矩阵Q的可逆性可以根据Q的3个列向量线性无关而知道,也可以由Q=(a
1
,a
1
, a
1
)
是两个可逆矩阵的乘积而知Q可逆.
转载请注明原文地址:https://www.kaotiyun.com/show/vkP4777K
0
考研数学三
相关试题推荐
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
求下列向量场A的散度:(1)A=xyi+cos(xy)j+cos(xz)k;
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.(2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
给定向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+b)T,β3=(2,1,a+4)T.当a为何值时(I)和(Ⅱ)等价?a为何值时(I)和(Ⅱ)不等价?
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则()正确。
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n—r(A)+1.
(Ⅰ)用等价、同阶、低阶、高阶回答:设f(x)在x0可微,f’(x0)≠0,则当△x→0时f(x)在x=x0处的微分与△x比较是()无穷小,△y=f(x0+△x)一f(x0)与△x比较是()无穷小,△y—df(x)与△x比较是()无
A、 B、 C、 D、 D结合二重积分的定义可得
已知随机变量X与Y相互独立且都服从参数为的0一1分布,即P{X=0}=P{X=1}=,P{Y=0}=P{Y=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立。
设f(x),g(x)(a<x<b)为大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时,有().
随机试题
1956年4月,毛泽东在《论十大关系》中提出,我国社会主义建设必须围绕一个基本方针,就是( )
女性,35岁。5年来劳累后心悸、气短、食欲缺乏、水肿,2周来上感后症状加重。检查:血压120/70mmHg,心尖区闻及舒张期隆隆样杂音,心率120次/分,心律不齐,心音强弱不等,颈静脉怒张,双肺底闻及湿啰音,肝肋下3cm,压痛(+),脾未及,下肢水肿(+)
根据自营业务的特征,下列属于自营业务经营风险的有( )。
货币市场基金安全性高,但流动性不强。()
在下列财务分析主体中,必须对企业营运能力、偿债能力、获利能力及发展能力的全部信息予以详尽了解和掌握的是()。
(2005年真题)审稿时要把握的政治性,包括涉及()等的现实政治问题。
教师的权利包括一般权利和职业权利两个方面。
以下关于职业道德说法错误的是()。
洛川会议是1937年8月22日至25日中共中央在陕北洛川召开的政治局扩大会议。会议指出,争取全民族抗战胜利的关键是
FillingintheInsuranceGapforAdultChildrenA)TamarZaidenweber,a24-year-oldgraduatestudentatGeorgetownUniversity,lo
最新回复
(
0
)