首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0. (2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0. (2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
admin
2017-10-19
94
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).
证明:(1)ξ
1
,ξ
2
∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0.
(2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
选项
答案
(1)令F(x)=∫
0
x
f(t)dt,F’(x)=f(x), ∫
0
2
f(t)dt=F(2)一F(0)=F’(c)(2一0)一2f(c),其中0<c<2. 因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M, [*] 由介值定理,存在x
0
∈[2,3],使得f(x
0
)=[*],即f(2)+f(3)=2f(x
0
), 于是f(0)=f(c)=f(x
0
), 由罗尔定理,存在[*],使得f’(ξ
1
)=f’(ξ
2
)=0. (2)令φ(x)=e
—2x
f’(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ,ξ)[*](0,3),使得φ’(ξ)=0, 而φ’(x)=e
—2x
[f"(x)一2f’(x)]且e
—2x
≠0,故f"(ξ)一2f’(ξ)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ApH4777K
0
考研数学三
相关试题推荐
设某种零件的长度L~N(18,4),从一大批这种零件中随机取出10件,求这10件中长度在16~22之间的零件数X的概率分布、数学期望和方差.
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,一3)T,则α2由α1,α3,α4表示的表达式为__________.
设向量组α1,α2,α3,α4线性无关,则向量组().
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
设某工厂生产甲、乙两种产品,产量分别为x件和y件,利润函数为L(x,y)一6x=x2+16y一4y2一2(万元).已知生产这两种产品时,每件产品都要消耗原料2000kg,现有该原料12000kg,问两种产品各生产多少时总利润最大
由方程确定的隐函数z=z(x,y)在点(1,0,一1)处的微分为dz=__________。
设f(x)=讨论函数f(x)在x=0处的可导性.
设方程组无解,则a=__________.
设随机变量X服从参数为2的指数分布,令U=,求:(1)(U,V)的分布;(2)U,V的相关系数.
设α1,α2,α3,α4,α5它们的下列部分组中,是最大无关组的有哪几个?(1)α1,α2,α3(2)α1,α2,α4(3)α1,α2,α5(4)α1,α3,α4
随机试题
对炎症病变痊愈来说,下列说法不正确的是
下列有关准据法的认识正确的是:()
甲、乙、丙共同设立一有限合伙企业,其中甲为有限合伙人。在合伙企业没有约定的情形下,关于该合伙企业事务的执行,下列判断正确的是:()
总分类账户余额试算平衡表中的平衡关系有( )。
针对财务分析的种种缺陷,在进行财务分析时必须采取()措施来弥补。
班主任在班级管理体制中的领导影响力主要表现在两个方面,一是(),二是()。
美国一项研究表明.二手烟雾对非烟民的危害远甚于烟民本人。吸烟的人在损害自身心血管系统的同时,系统可以进行自我调节以便于抵消吸烟造成的部分后果,而不吸烟的人的身体无法适应烟雾吸入后的变化。因此,被动吸烟对非烟民所产生的影响远远大于对烟民的影响。以下哪项如果为
土地改革
下面关于防火墙功能的说法中,不正确的是()。
Advertisingisacollectivetermforpublicannouncementsdesignedto【B1】______thesaleofspecificcommoditiesorservices.Ad
最新回复
(
0
)