首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 设函数f(x)在x=0的某个邻域内具有二阶连续导数,且f(0)≠0,f'(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)一f(0)是比h2高阶的无穷小.
[2002年] 设函数f(x)在x=0的某个邻域内具有二阶连续导数,且f(0)≠0,f'(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)一f(0)是比h2高阶的无穷小.
admin
2019-06-09
71
问题
[2002年] 设函数f(x)在x=0的某个邻域内具有二阶连续导数,且f(0)≠0,f'(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)一f(0)是比h
2
高阶的无穷小.
选项
答案
为证三个实数唯一存在,设法找出三个方程,再用克拉默法则证其解唯一. 注意到f(0)≠0,f'(0)≠0,f"(0)≠O,也可用麦克劳林展开式证明. 证 因为当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)一f(0)是比h
2
高阶的无穷小,故其本身必是无穷小,即[*][λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)一f(0)]=0. 因f(x)在x=0处连续,得到 0=[*][λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)一f(0)]一(λ
1
+λ
2
+λ
3
一1)f(0), 而f(0)≠0,所以得 λ
1
+λ
2
+λ
3
一1=0. 又[*][λ
1
f"(h)+4λ
2
f"(2h)+9λ
3
f"(3h)] =[*]( λ
1
+4λ
2
+9λ
3
)f"(0). 因为f"(0)≠0,故得 λ
1
+4λ
2
+9λ
3
=0, ② 其中还包含0=[*][λ
1
f'(h)+2λ
2
f'(2h)+3λ
3
f'(3h)]=(1λ
1
+2λ
2
+3λ
3
)f'(0). 因为f'(0)≠0,有 λ
1
+2λ
2
+3λ
3
=0 ③ 因此由式①、式②、式③得λ
1
,λ
2
,λ
3
所满足的线性方程组: [*]因其系数行列式(范德蒙行列式)[*]=(2—1)(3—1)(3—2)=2≠0, 故由克拉默法则知,存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)一f(0)是比h
2
高阶的无穷小.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/veV4777K
0
考研数学二
相关试题推荐
设有矩阵Am×n,Bn×m,Em+AB可逆,(1)验证:En+BA也可逆,且(En+BA)-1=En—B(Em+AB)-1A;(2)设其中,利用(1)证明:P可逆,并求P-1.
设,讨论f(x)在点x=0处的连续性与可导性.
设函数f(χ,y,z)一阶连续可偏导且满足f(tχ,ty,tz)=tkf(χ,y,z).证明:=kf(χ,y,z).
设3阶矩阵A可逆,且A一1=A*为A的伴随矩阵,求(A*)一1.
曲线y=的斜渐近线方程为_________。
α1,α2,α3,β1,β2均为四维列向量,A=(α1,α2,α3,β1),B=(α3,α1,α2,β2),且|A|=1,|B|=2,则|A+B|=()
求二元函数z=f(x,y)=x2y(4一x一y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值。
累次积分∫01dx∫x1f(x,y)dy+∫12dy∫02-yf(x,y)dx可写成()
计算(x2+y2)dxdy,其中D是由y=一x,所围成的平面区域。
设。已知线性方程组Ax=b存在两个不同的解。求λ,a;
随机试题
董其昌的“南北宗论”中的南与北是指地域之分。[天津2019]()
发生瘀血的局部组织和器官
男性,34岁。间断发热38℃以上3个月,无痛性颈部淋巴结肿大2个月。查体:双颈部各触及一个2cm×2cm肿大淋巴结,心肺(一),肝肋下未触及,脾肋下4cm。如果颈部淋巴结活检为淋巴细胞、浆细胞、中性粒细胞、嗜酸粒细胞及较多的R—S细胞混同存在,最可能的
甲的行为构成( )。本案中,乙的行为构成( )。
下列选项中不属于零售银行二级目录的是()
契税的纳税地点是()。
从银行的整体风险考虑,银行监管的方法包括()。
刑事强制权是为了保证刑事诉讼的顺利进行,由公安机关对犯罪嫌疑人、被告人行使强制权力。下列属于刑事强制权的有()。
研究发现,长期单施化肥导致了土壤细菌群落结构的显著改变与多样性的大幅降低;农家有机肥的添加极大地缓解单施化肥对细菌群落的不利影响,而秸秆的添加对细菌群落的影响较小。因此,研究人员认为,农家有机肥与化肥的联合施用能促进土壤微生物群落结构的稳定与多样性的维持,
下列关于return语句的叙述中,正确的是
最新回复
(
0
)