首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A-aE)(A-bE)=0. (2)r(A-aE)+r(A-bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A-aE)(A-bE)=0. (2)r(A-aE)+r(A-bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
admin
2016-10-21
97
问题
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:
(1)(A-aE)(A-bE)=0.
(2)r(A-aE)+r(A-bE)=n.
(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
选项
答案
不妨设a和b都是A的特征值.(因为如果a不是A的特征值,则3个断言都推出A=bE.如果b不是A的特征值,则3个断言都推出A=aE.) (1)[*](2) 用关于矩阵的秩的性质,由(A-aE)(A-bE)=0.得到: r(A-aE)+r(A-bE)≤n, r(A-aE)+r(A-bE)≥r((A-aE)-(A-bE))=r((b-a)E)=n, 从而r(A-aE)+r(A-bE)=n. (2)[*](3) 记k
a
,k
b
分别是a,b的重数,则有 k
a
≥n-r(A-aE)① k
b
≥n-r(A-bE)② 两式相加得n≥k
a
+k
b
≥n-r(A-aE)+n-r(A-bE)=n,于是其中“≥”都为“=”,从而①和②都是等式,并且k
a
+k
b
=n. k+k=n,说明A的特征值只有a和b,它们都满足(λ-a)(λ-b)=0. ①和②都是等式,说明A相似于对角矩阵. (3)[*](1) A的特征值满足(λ-a)(λ-b)=0,说明A的特征值只有a和b.设B是和A相似的对角矩阵,则它的对角线上的元素都是a或b,于是(B-aE)(B-bE)=0.而(A-aE)(A-aE)相似于(A-bE)(B-bE),因此(A-aE)(A-bE)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/vXt4777K
0
考研数学二
相关试题推荐
设函数f(x)在x0的某一邻域内具有直到n阶的连续导数,且f’(x0)=f"(x0)=…..=f(n-1)(x0)=0,而f(n)(x0)≠0,试证:当n为偶数,且f(n)(x0)>0时,则f(x0)为极小值;当n为偶数.且f(n)(x0)<0时,则f
已知函数求函数图形的凹凸区间及拐点。
设f(x)在[a,b]上可导,(0<a<b),证明:存在ξ∈(a,b),使
假设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,过点A(0,f(0))与B(1,f(1))的直线与曲线y=f(x)相交于点C(c,f(c)),其中0<c<1.证明:在(0,1)内至少存在一点ξ,使f"(ξ)=0.
求下列的不定积分。∫(x-2)2dx
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明:∫-aaf(x)g(x)dx=A∫0ag(x)dx
求,其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域如图所示。
求下列微分方程的通解。(x+1)y’+1=2e-y
求微分方程的通解。
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
随机试题
某国2000年人口为6742万人,2008年人口为9814万人,那么该国2000—2008年间的人口年平均增减率计算正确的是()
A.以患者作为受试对象的试验B.以人作为受试对象的试验C.人体实验时必须要做到真正的知情同意D.选择受试者的时候需遵循的E.保障受试者身心安全公平原则是
左上睑下垂,左眼内收及上下视受限,左瞳孔散大,直接、间接对光反射均消失,病变部位是
对损害消费者合法权益的行为,通过大众传播媒介予以揭露批评是应当保证其提供的商品或者服务的实际质量与其表明的(如产品说明、实物样品等)质量状况相符,是属于
当期缴纳城镇土地使用税为()万元。当期缴纳房产税为()万元。
当主管税务机关确认购货方在真实交易中取得的供货方虚开的增值税专用发票属于善意取得时,符合规定的处理方法是( )。
甘于奉献这一人民警察职业道德规范的要求包括()。
设直线证明:直线L1,L2为异面直线;
ThereportissuedbytheKaiserFamilyFoundationmainlyshowsthat
Technologyhascometothemarketplace.InmanyU.Sstoresthecash【C1】______hasbeenreplacedbyacomputerthatquicklyande
最新回复
(
0
)