首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2012年] (Ⅰ)证明方程xn+xn-1+…+x=l(n>1的整数),在区间(1/2,1)内有且仅有一个实根;(Ⅱ)记(I)中的实根为xn,证明xn存在,并求此极限.
[2012年] (Ⅰ)证明方程xn+xn-1+…+x=l(n>1的整数),在区间(1/2,1)内有且仅有一个实根;(Ⅱ)记(I)中的实根为xn,证明xn存在,并求此极限.
admin
2019-04-05
144
问题
[2012年] (Ⅰ)证明方程x
n
+x
n-1
+…+x=l(n>1的整数),在区间(1/2,1)内有且仅有一个实根;(Ⅱ)记(I)中的实根为x
n
,证明
x
n
存在,并求此极限.
选项
答案
可用零点定理和命题1.1.7.5证明(Ⅰ),用夹逼定理证明(Ⅱ). 证 (Ⅰ)令F
n
(x)=x
n
+x
n-1
+…+x一1,f
n
(x)=x
n
+x
n-1
+…+x.显然F
n
(x) 在[1/2,1]上连续,又F
n
(1)=n一1>0(因n>1). F
n
(1/2)=(1/2)
n
+(1/2)
n-1
+…+1/2—1=[*][(1/2)
n-1
+(1/2)
n-2
+…+1]一1 =f
n
[*]<0. 由闭区间上连续函数的零点定理(见定理1.1.7.1)知,在开区间(1/2,1)内,方程F
n
(x)=0即 f
n
(x)=1至少存在一实根.又因 F'
n
(x)=nx
n-1
+(n~1)x
n-2
+…+l>0, 其中x∈(1/2,1),故F
n
(x)=f
n
(x)一1在(1/2,1)内单调.由命题1.1.7.5知,方程F
n
(x)=0, 即f
n
(x)=1在(1/2,1)内仅存在一个实根x
n
.因而f
n
(x
n
)=1. (Ⅱ)为证[*]x
n
存在,并求此极限,对f
n
(x)在区间[1/2,x
n
]上使用拉格朗日中值定理 得到:存在ξ
n
∈(1/2,x
n
),使得 [*]=f'
n
(ξ
n
), 因f'
n
(ξ
n
)=nξ
n-1
+(n一1)ξ
n-1
+…+1>1(因ξ>1/2,n>1),故 ∣f
n
(x
n
)一f
n
(1/2)∣=∣f'
n
(ξ
n
)∣∣x
n
一1/2∣>∣x
n
一1/2∣. 而 ∣f
n
(x
n
)一f
n
(1/2)∣=f
n
(x
n
)一f
n
(1/2)=1一[1一(1/2)
n
]=(1/2)
n
, 故∣x
n
一1/2∣<(1/2)
n
.由0≤∣x
n
一1/2∣≤(1/2)
n
及夹逼定理知 [*]∣x
n
一1/2∣=0, 即[*]∣x
n
∣=1/2. 因而[*]x
n
存在,且[*]x
n
=1/2.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/vXV4777K
0
考研数学二
相关试题推荐
记平面区域D={(x,y)|x|+|y|≤1),计算如下二重积分:(1)其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2),常数λ>0.
证明方程x5-3x=1在1与2之间至少存在一个实根.
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为v0/3?并求到此时刻该质点所经过的路程.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1)求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L及两坐标轴所围图形的面积最小
设当χ→0时,eχ=(aχ2+bχ+1)是χ2的高阶无穷小,则().
[2012年]曲线y=x2+x(x<0)上曲率为√2/2的点的坐标是_________.
[2013年]设函数f(x)=若反常积分∫1+∞f(x)dx收敛,则().
[2009年]设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx=().
[2013年]设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:存在η∈(一1,1),使得f″(η)+f′(η)=1.
(2002年)设函数f(χ)在χ=0的某邻域内具有二阶连续导数,且f(0)≠0,f′(0)≠0,f〞(0)≠0.证明:存在惟一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
随机试题
Traditionallinguisticswas______innature.
可引起中枢兴奋作用的药物是()
宫缩乏力对母体的影响与哪项无关
计价模式是与社会经济体制相适应的,随着我国经济体制和工程造价管理体制改革的不断深入,建设项目投资的计价模式也相应发生了根本的变化,有()。
“我有一壶酒,足以慰风尘”,这是一个求下联的微博,短短三天时间,微博被转发9万多次,评论2万多条,阅读量更是达到了惊人的1800万,并且引起了网友巨大的接联热潮。这一现象启示我们()。①优秀传统文化有旺盛的生命力②要受到大众的
提出“大丈夫”的理想人格,并把这种理想人格描绘为“富贵不能淫,贫贱不能移,威武不能屈”的中国古代思想家是()。
乙建筑公司向甲建材公司发出传真,表示“急需0号水泥100吨”。甲公司收到传真后,立即回电表示没问题,并开始安排货源。但三日后,当甲公司询问如何发货时,乙公司表示已经购得,不再需要该种水泥。双方发生争议,甲公司诉至法院。[中财2014年研]根据上述
软件的维护并不只是修正错误。为了满足用户提出的增加新功能、修改现有功能及一般性的改进要求和建议,需要进行(55),它是软件维护工作的主要部分。
Whilesomepeopleclaimthataperson’sessentialqualitiesareinheritedatbirth,othersinsistthatthecircumstancesunderwh
Myfatherwavedmegood-byeandthebussetoff.Thepersonsitting【C1】______tomewasanengineergoingtoPeshawartoinspect
最新回复
(
0
)