首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2012年)设区域D由曲线y=sin,x=,y=1围成,则(xy5-1)dxdy=
(2012年)设区域D由曲线y=sin,x=,y=1围成,则(xy5-1)dxdy=
admin
2018-07-30
115
问题
(2012年)设区域D由曲线y=sin,x=
,y=1围成,则
(xy
5
-1)dxdy=
选项
A、π.
B、2.
C、-2.
D、-π.
答案
B
解析
方法1:Q(α
1
,α
2
,α
2
,α
3
)=(α
1
,α
2
,α
3
)
=PM
其中,矩阵M=
,易求出M
-1
=
于是,Q
-1
AQ=(PM)
-1
A(PM)=M
-1
(P
-1
AP)M
因此选(B).
方法2:已知A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)
(Aα
1
,Aα
2
,Aα
3
)=(α
1
,α
2
,2α
3
)
Aα
1
=α
1
,Aα
2
=α
2
,Aα
3
=2α
3
A(α
1
+α
2
)=Aα
1
+Aα
2
=α
1
+α
2
AQ=A(α
1
+α
2
,α
2
,α
3
)
=(A(α
1
+α
2
),Aα
2
,Aα
3
)=(α
1
+α
2
,α
2
,2α
3
)
=(α
1
+α
2
,α
2
,α
3
)
两端左乘Q
-1
,得Q
-1
AQ=
,故选(B).
方法3:由已知A相似于对角矩阵diag(1,1,2),知α
1
,α
2
,α
3
是A的3个线性无关特征向量,且依次属于特征值1,1,2.α
1
+α
2
≠0(否则α
1
+α
2
线性相关,与α
1
,α
2
,α
3
线性无关矛盾),且A(α
1
+α
2
)=Aα
1
+Aα
2
=α
1
+α
2
,因此α
1
+α
2
是A的属于特征值1的一个特征向量.
从而知α
1
+α
2
,α
2
,α
3
是A的3个线性无关特征向量,且依次属于特征值1,1,2,因此利用矩阵相似对角化可写出
(α
1
+α
2
,α
2
,α
3
)
-1
A(α
1
+α
2
,α
2
,α
3
)=diag(1.1,2),
即Q
-1
AQ=diag(1,1,2).因此选(B).
转载请注明原文地址:https://www.kaotiyun.com/show/x9j4777K
0
考研数学二
相关试题推荐
设A,B为3阶矩阵,且|A|=33,|B|=2,|A-1+B|=2,则|A+B-1|=_________。
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
(2011年试题,二)微分方程y’+y=e-x满足条件y(0)=0的解为y=_________
曲线y=的渐近线条数为().
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设A为n阶矩阵,且|A|=0,则A().
求曲y=x2-2x、y=0、x=1、x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
设f(x)在[0,1]上连续且满足f(0)=1,f’(x)-f(x)=a(x-1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
随机试题
以下集成块型号中不属于8位系列单片机型号的是()
某规模化种猪场怀孕母猪出现体温升高,食欲不振,产弱仔,死胎率达60%;哺乳仔猪体温升高至40℃以上,呼吸困难,耳朵发紫,眼结膜炎,3周内死亡率达70%该病最可能是()。
免疫病理检查几乎所有SLE病人均可出现病变的脏器是
关于继承的放弃与接受,下列说法中正确的有()。
通过计算机等现代化手段收集及处理的信息是( )。
()是建设工程项目生产过程的总集成者—人力资源、物质资源和知识的集成,也是建设工程项目生产过程的总组织者。
下列各项中,不属于会计核算具体内容的是()。
给定资料1.2014年8月1日,央行发布的《第二季度货币政策执行报告》显示,小微企业融资不易、成本较高的结构性问题较为突出。小崔原本是一家国有银行的公司客户经理.对接片区内的一些国有大型企业。“大国企不好伺候.不过好在只要背靠一两家大企
在中国近代史上,在审级制度上采取四级三审制的政权有()。
按照网络的拓扑结构划分以太网(Ethernet)属于()。
最新回复
(
0
)