首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2012年)设区域D由曲线y=sin,x=,y=1围成,则(xy5-1)dxdy=
(2012年)设区域D由曲线y=sin,x=,y=1围成,则(xy5-1)dxdy=
admin
2018-07-30
86
问题
(2012年)设区域D由曲线y=sin,x=
,y=1围成,则
(xy
5
-1)dxdy=
选项
A、π.
B、2.
C、-2.
D、-π.
答案
B
解析
方法1:Q(α
1
,α
2
,α
2
,α
3
)=(α
1
,α
2
,α
3
)
=PM
其中,矩阵M=
,易求出M
-1
=
于是,Q
-1
AQ=(PM)
-1
A(PM)=M
-1
(P
-1
AP)M
因此选(B).
方法2:已知A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)
(Aα
1
,Aα
2
,Aα
3
)=(α
1
,α
2
,2α
3
)
Aα
1
=α
1
,Aα
2
=α
2
,Aα
3
=2α
3
A(α
1
+α
2
)=Aα
1
+Aα
2
=α
1
+α
2
AQ=A(α
1
+α
2
,α
2
,α
3
)
=(A(α
1
+α
2
),Aα
2
,Aα
3
)=(α
1
+α
2
,α
2
,2α
3
)
=(α
1
+α
2
,α
2
,α
3
)
两端左乘Q
-1
,得Q
-1
AQ=
,故选(B).
方法3:由已知A相似于对角矩阵diag(1,1,2),知α
1
,α
2
,α
3
是A的3个线性无关特征向量,且依次属于特征值1,1,2.α
1
+α
2
≠0(否则α
1
+α
2
线性相关,与α
1
,α
2
,α
3
线性无关矛盾),且A(α
1
+α
2
)=Aα
1
+Aα
2
=α
1
+α
2
,因此α
1
+α
2
是A的属于特征值1的一个特征向量.
从而知α
1
+α
2
,α
2
,α
3
是A的3个线性无关特征向量,且依次属于特征值1,1,2,因此利用矩阵相似对角化可写出
(α
1
+α
2
,α
2
,α
3
)
-1
A(α
1
+α
2
,α
2
,α
3
)=diag(1.1,2),
即Q
-1
AQ=diag(1,1,2).因此选(B).
转载请注明原文地址:https://www.kaotiyun.com/show/x9j4777K
0
考研数学二
相关试题推荐
A是二阶矩阵,有特征值λ1=1,λ2=2,f(x)=x2一3x+4,则f(A)=________.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
已知曲线y=f(x)过点(0,-1/2),且其上任一点(x,y)处的切线斜率为xln(1+x2),则f(x)=__________.
设f(x)在[0,0](a>0)上非负且二阶可导,且f(0)=0,f’’(x)>0,为y=f(x),y=0,x=a围成区域的形心,证明:
曲线y=x(x-1)(2-x)与x轴所围成的图形的面积可表示为().
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设A为三阶矩阵,Aαi=iαi(i=1,2,3),,求A.
设f(x)在[0,1]上连续且满足f(0)=1,f’(x)-f(x)=a(x-1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
随机试题
A、forgotB、lostC、potD、postD
康复评定的目的包括
下列哪项不是流行性出血热的临床特点( )
护士在从事护理工作时,首要的义务是
下列关于法与道德的描述中,正确的是哪些?()
依据法律的直接规定而产生代理权的一种代理,称为()。
下列不属于砌块缺点的是( )。
孩子学话中关键的两步是经过独词句和双词句阶段。()
(66)isaprotocolthatahostusestoinformarouterwhenitjoinsorleavesanInternetmulticastgroup.(67)isanerrordetec
A、Thejobmarket.B、Theirformerschools.C、Goodschools.D、Thelocalhighschoolorcolleges.D
最新回复
(
0
)