首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[20l0年] 设A,B为三阶矩阵,且∣A ∣=3,∣B∣=2,∣A-1+B∣=2,则∣A+B-1∣=_________.
[20l0年] 设A,B为三阶矩阵,且∣A ∣=3,∣B∣=2,∣A-1+B∣=2,则∣A+B-1∣=_________.
admin
2019-05-10
47
问题
[20l0年] 设A,B为三阶矩阵,且∣A ∣=3,∣B∣=2,∣A
-1
+B∣=2,则∣A+B
-1
∣=_________.
选项
答案
∣A+B
-1
∣=∣A+B
-1
∣,常用单位矩阵E将其恒等变形为∣A+B
-1
∣=∣A+B
-1
E∣而求之,也可在A+B
-1
的左和(或)右边乘以适当矩阵化为其行列式已知的矩阵而求之. 解一 ∣A+B
-1
∣=∣EA+B
-1
E∣=∣(B
-1
B)A+B
-1
(A
-1
A)∣=∣B
-1
(BA+A
-1
A)∣ =∣B
-1
(B+A
-1
)A∣=∣B
-1
∣∣B+A
-1
∣A∣=[*]1.2.3=3. 解二 A
-1
(B
-1
+A)B=A
-1
B
-1
B+A
-1
AB=A
-1
+B,故 ∣A
-1
∣∣B
-1
+A∣∣B∣=∣A
-1
+B∣=2, 即 ∣B
-1
+A∣=2∣A∣/∣B∣=6/2=3.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ujV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上二阶可导,且f〞(χ)>0,取χi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1χ1+k2χ2+…+knχn)≤k1f(χ1)+k2f(χ2)+…+knf(χn).
设f(χ)二阶可导,=1且f〞(χ)>0.证明:当χ≠0时,f(χ)>χ.
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
设A是m×n阶矩阵,若ATA=O,证明:A=O.
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,B=E+ααT,且B为A的逆矩阵,则a=_______.
设A,B都是n阶可逆矩阵,则().
设a是整数,若矩阵A=的伴随矩阵A*的特征值是4,-14,-14.求正交矩阵Q,使QTQ为对角矩阵.
设三阶矩阵A的特征值为2,3,λ,若行列式|2A|=-48,则λ=_______.
设向量组线性相关,但任意两个向量线性无关,求参数t.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E证明:B的列向量组线性无关.
随机试题
我国狭义上的税收征管法是指_________。
A.下叶后基底段B.上叶后段或下叶背段C.上叶尖后段和下叶背段D.左下叶和舌叶支气管支气管扩张好发于
膜材PVA05-88中,05表示
独语、错语的共同病因是()
纸币之所以能够产生,跟货币执行()职能的特点有关。
根据土地增值税法律制度的规定,下列情形中,纳税人应当进行土地增值税清算的有()。(2010年)
问题学生就是差生。()
教师自我完善的重要途径是()。
在检测网络故障时使用的ping命令是基于______协议实现的。
AIftheGardeners’argumentwassoundBbecauseshewasclevererthanotherchimpsCwhenshewantedtoeatDwhileshewasat
最新回复
(
0
)