首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[20l0年] 设A,B为三阶矩阵,且∣A ∣=3,∣B∣=2,∣A-1+B∣=2,则∣A+B-1∣=_________.
[20l0年] 设A,B为三阶矩阵,且∣A ∣=3,∣B∣=2,∣A-1+B∣=2,则∣A+B-1∣=_________.
admin
2019-05-10
56
问题
[20l0年] 设A,B为三阶矩阵,且∣A ∣=3,∣B∣=2,∣A
-1
+B∣=2,则∣A+B
-1
∣=_________.
选项
答案
∣A+B
-1
∣=∣A+B
-1
∣,常用单位矩阵E将其恒等变形为∣A+B
-1
∣=∣A+B
-1
E∣而求之,也可在A+B
-1
的左和(或)右边乘以适当矩阵化为其行列式已知的矩阵而求之. 解一 ∣A+B
-1
∣=∣EA+B
-1
E∣=∣(B
-1
B)A+B
-1
(A
-1
A)∣=∣B
-1
(BA+A
-1
A)∣ =∣B
-1
(B+A
-1
)A∣=∣B
-1
∣∣B+A
-1
∣A∣=[*]1.2.3=3. 解二 A
-1
(B
-1
+A)B=A
-1
B
-1
B+A
-1
AB=A
-1
+B,故 ∣A
-1
∣∣B
-1
+A∣∣B∣=∣A
-1
+B∣=2, 即 ∣B
-1
+A∣=2∣A∣/∣B∣=6/2=3.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ujV4777K
0
考研数学二
相关试题推荐
设f(χ)二阶可导,f(0)=0,且f〞(χ)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
设矩阵A满足(2E-C-1B)AT=C-1,且求矩阵A.
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,B=E+ααT,且B为A的逆矩阵,则a=_______.
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f′(ξ)=0.
已知二次型f=2χ12+3χ22+3χ32+2aχ2χ3(a>0),通过正交变换化成标准形f=y12+2y22+5y32.求参数a及所用的正交变换矩阵.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设三阶矩阵A的特征值为2,3,λ。若行列式|2A|=一48,则λ=________。
设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=_________。
随机试题
以下是关于孔子的行政组织思想的材料:材料一:《论语·颜渊》中记载:齐景公问政于孔子。孔子对曰:“君君、臣臣、父父、子子。”公曰:“善哉!信如君不君、臣不臣、父不父、子不子,虽有粟,吾得而食诸?”大意是说,齐景公问孔子如何治理国家。孔子说:“做君主
服用短效口服避孕药妈富隆避孕,一般什么时候开始服用作为紧急避孕措施,放置含铜IUD应选在什么时期
一旦发生颅内出血,处理措施有( )。
按照设计合同示范文本的规定,在设计合同的履行中,发包人要求终止或解除合同,后果责任包括()。
试说明纺织纤维的特点。
保荐机构、保荐业务负责人或者内核负责人在1个自然年度内被采取监管措施累计()次以上,中国证监会可暂停保荐机构的保荐机构资格3个月,责令保荐机构更换保荐业务负责人、内核负责人。
卡斯特变革模式把组织变革分为六个步骤,这些步骤包括()。
根据以下有关消费方面的图表,回答下列问题。
阅读以下的配置信息,解释(7)处的命令,将答案填写在相应的位置。Switch#cofingtSwitch(cofing)#nterfacefo/5//进入接口5配置模式Switch(coling-if)#switc
为了使模块尽可能独立,要求
最新回复
(
0
)