首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0,证明: 存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0,证明: 存在ξ∈(a1,an),使得
admin
2021-11-25
64
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0,证明:
存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,..,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,..,a
n
的数,不妨设a
1
<c<a
2
<...a
n
令[*] 构造辅助函数ψ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然ψ(x)在[a
1
,a
n
]上n阶可导,且ψ(a
1
)=ψ(c)=ψ(a
2
)=...=ψ(a
n
)=0 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),....,ξ
n
(1)
∈(a
n-1
,a
n
),使得ψ’(ξ
1
(1)
)=ψ’(ξ
2
(1)
)=...=ψ’(ξ
n
(1)
)=0,ψ’(x)在(a
1
,a
n
)内至少有n个不同的零点,重复使用罗尔定理,则ψ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同的零点,设为c
1
,c
2
∈(a
1
,a
n
),使得 ψ
(n-1)
(c
1
)=ψ
(n-1)
(c
2
)=0 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得ψ
(n)
(ξ)=0 而ψ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/tdy4777K
0
考研数学二
相关试题推荐
=________.
曲线y=的拐点的个数为
设y=χ3+3aχ2+3bχ+c在χ=-1处取最大值,又(0,3)为曲线的拐点,则().
设z=z(x,y)由方程所确定,其中F是任意可微函数,则=______。
设常数k>0,函数在(0,+∞)内零点的个数为().
比较下列积分值的大小:Ji=e-(x2+y2)dxdy,i=1,2,3,其中D1={x,y)|x2+y2≤R2},D2={(x,y)|x2+y2≤2R2},D3={(x,y)||x|≤R,|y|≤R}.则J1,J2,J3之间的大小顺序为
设f(x)是以T为周期的可微函数,则下列函数中以T为周期的函数是()
微分方程y"一7y’=(x一1)2的待定系数法确定的特解形式(系数的值不必求出)是____________。
设f(x)在[a,b]上有二阶导数,且f’’(x)≤0.证明
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从第二只桶
随机试题
经性菌毛相互沟通,将遗传物质从供菌转移给受菌的过程称为
患者男性,51岁,有结核病接触史,吸烟30余年,无自觉症状。体检时胸片发现左上肺于第2前肋问近外侧胸壁处有直径约3cm的肿块阴影,边缘较模糊,痰液检查未发现癌细胞,亦未找到抗酸杆菌,支纤镜检阴性。为明确诊断,做下列检查把握性最大的是
与原发型肝癌应鉴别的疾病主要是
关于音叉试验描述不正确的是
常用葛根而不用升麻治疗的病证是
下列选项中,在城市黄线范围内禁止进行的活动包括()。
当影子定价与摊余成本法确定的基金资产净值偏离度的绝对值达到或者超过()时,基金管理人应当就此事项进行临时报告。
1.甲股份有限公司(以下简称“甲公司”),属于增值税一般纳税人。甲公司2×15年至2×17年与固定资产有关的业务资料如下:(1)2×15年12月1日,甲公司购入一条需要安装的生产线,取得的增值税专用发票上注明的生产线价款为1000万元,增值税税额为170
Idon’tknowyouwanttokeeptheletter.I’ve______itup.
Inbringingupchildren,everyparentwatcheseagerlythechild’sacquisition(学会)ofeachnewskill—thefirstspokenwords,the
最新回复
(
0
)