首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2= (1,一1,1,一1,2)T,β3
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2= (1,一1,1,一1,2)T,β3
admin
2019-01-19
116
问题
设线性方程组(1)Ax=0的一个基础解系为α
1
=(1,1,1,0,2)
T
,α
2
=(1,1,0,1,1)
T
,α
3
=(1,0,1,1,2)
T
。线性方程组(2)Bx=0的一个基础解系为β
1
=(1,1,一1,一1,1)
T
,β
2
= (1,一1,1,一1,2)
T
,β
3
=(1,一1,一1,1,1)
T
。求:
线性方程组(3)
的通解;
选项
答案
线性方程组(1)Ax=0的通解为x=k
1
α
1
+k
2
α
2
+k
3
α
3
;线性方程组(2)Bx=0的通解为x=l
1
β
1
+l
2
β
2
+l
3
β
3
;线性方程组(3)[*]的解是方程组(1)和(2)的公共解,故考虑线性方程组(4)x=k
1
α
1
+k
2
α
2
+k
3
α
3
=l
1
β
1
+l
2
β
2
+l
3
β
3
,对其系数矩阵作初等行变换,即 [*] 则方程组(4)的一个基础解系是(一2,0,2,一1,0,1)
T
。将其代入(4)得到方程组(3)的一个基础解系ξ=2α
1
+2α
2
=一β
1
+β
3
=(0,一2,0,2,0)
T
。所以方程组(3)的通解为 x=k(0,一1,0,1,0)
T
,基中k为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/tBP4777K
0
考研数学三
相关试题推荐
设有齐次线性方程组Aχ=0和Bχ=0,其中A、B均为m×n矩阵.现有4个命题:【】①若Aχ=0的解均是Bχ=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Aχ=0的解均是Bχ=0的解;③若Aχ=0与B
设总体X~B(m,p),其中m已知,p未知,从X中抽得简单样本X1,…,Xn,试求p的矩估计和最大似然估计.
设总体X的分布函数为其中参数θ(0<θ<1)未知.X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.求EX2.
设随机变量X与Y相互独立,且X服从正态分布N(0.1),Y在区间[一1.3]上服从均匀分布,则概率P{max(X,Y)≥0}=_________.
已知曲线y=f(x)在x=1处的切线方程为y=x一1,求。
计算I=sin(x+y)|dxdy,其中积分区域D={(x,y)|0≤x≤π,0≤y≤2π}.
微分方程xdy+2ydx=0满足初始条件y|x=2=1的特解为()
函数f(x)=|4x3一18x2+27|在区间[0,2]上的最小值为_____,最大值为______.
设α1,α2,…,αs线性无关,βi=αI+αI+1,i=1,…,s—1,βs=αS+α1.判断β1β2,…,βs线性相关还是线性无关?
随机试题
监生历事
A.引起亚急性感染性心内膜炎最常见的微生物B.引起急性感染性心内膜炎最常见的微生物C.引起肝炎最常见的微生物D.引起溃疡性结肠炎最常见的微生物E.引起病毒性心肌炎最常见的微生物金黄色葡萄球菌是
神经鞘瘤的穿刺液特点为
高血压病脑出血急性期处理的最重要环节是
工业投资项目可行性研究的内容十分丰富,其中的几项基本内容是( )。
《证券法》最基本的原则是()。
以下各项中,说法A的有()。
设A=(aij)3×3是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是________.
ThefederalentitycreatedbytheConstitutionisbyfarthedominantfeatureoftheAmericangovernmentalsystem.(1)_____the
Emmaismygrandmother.
最新回复
(
0
)