首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a为常数,讨论两曲线y=ex与y=的公共点的个数及相应的a的取值范围.
设a为常数,讨论两曲线y=ex与y=的公共点的个数及相应的a的取值范围.
admin
2022-10-09
76
问题
设a为常数,讨论两曲线y=e
x
与y=
的公共点的个数及相应的a的取值范围.
选项
答案
若a=0,则易知y=e
x
与y=0无公共点,以下设a≠0.讨论y=e
x
与y=[*]交点的个数,等同于讨论方程e
x
=[*]的根的个数,亦即等同于讨论函数 f(x)=xe
x
-a 的零点个数. f
’
(x)=(x﹢1)e
x
[*]0, 得唯一驻点x
0
=-1.当x<-1时,f
’
(x)<0;当x>-1时,f
’
(x)﹥0.所以 minf(x)=f(-1)=-e
-1
-a. 又 f(-∞)=[*]f(x)=-a, f(﹢∞)=[*]f(x)=﹢∞. ①设-e
-1
-a﹥0,即设a<-e
-1
,则minf(x)>0,f(x)无零点; ②设-e
-1
-a=0,即设a=-e
-1
,则f(x)有唯一零点x
0
=-1; ③设-e
-1
-a﹤0,即设a>-e
-1
.又分两种情形: (i)设-e
-1
﹤a﹤0,则有f(-∞)=-a﹥0,f(-1)=-e
-1
-a﹤0,f(﹢∞)>0.而在区间 (-∞,-1)内f(x)单调减少,在区间(-1,﹢∞)内f(x)单调增加,故f(x)有且仅有两个零点; (ii)设a﹥0.易知f(x)=xe
x
-a在区间(-∞,0]内无零点,而在区间(0,﹢∞)内,f(0
﹢
)=-a﹤0. f(﹢∞)=﹢∞,f
’
(x)=(x﹢1)e
x
﹥0,所以f(x)在区间(0,﹢∞)内刚好有1个零点.讨论完毕. 综上,有结论: 当a<-e
-1
或a=0时,无交点;当a=-e
-1
时,有唯一交点(切点);当-e
-1
﹤a﹤0时,有两个交点;当a>0时,在区间(-∞,0]内无交点,而在区间(0,﹢∞)内,即第一象限内有唯一交点.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/sRf4777K
0
考研数学二
相关试题推荐
设A=(α1,α2,α3)为三阶矩阵,且|A|=3,则|α1+2α2,α2-3α3,α3+2α1|=_______.
设f(χ)=,则f(n)(χ)=_______.
以y=cos2x+sin2x为一个特解的二阶常系数齐次线性微分方程是____________.
已知三维向量组α1,α2,α3线性无关,则向量组α1一α2,α2-kα3,α3一α1也线性无关的充要条件是k_________.
设三阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P—1AP=______。
设平面区域D={(x,y)|(x-1)2+(y-1)2≤2},I1=(x+y)dσ,I2=ln(1+x+y)dσ.则正确的是()
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的一个基础解系.
设α1,α2,α3,α4,α5为4维列向量,下列说法中正确的是()
(Ⅰ)证明:对任意的正整数n,都有成立;(Ⅱ)设an=1+-lnn(n=1,2,…),证明数列{an}收敛。
随机试题
根据锂业分会统计,2015年中国锂消费量为7.87万吨,同比增长19.6%。2014年全球锂消费量为16.2万吨。全球已查明的锂资源量3950万吨(金属量),锂储量1400万吨。其中,中国锂资源量达54万吨,锂储量320万吨,并且拥有很好的盐湖锂资源。
与检测淋巴因子有关的变态反应是
盂肱关节组成是由
女性,9岁,发热,双腮腺肿大4天,伴中上腹痛1天。为除外胰腺炎之合并症,首先应检查
教师的成长可以划分为()三个阶段。
取保候审由()执行。
1994年以后,税收返还额在1993年基数上逐年递增,递增按本地区增值税和消费税增长率的()系数确定。
甲趁在路上行走的妇女乙不注意之际,将乙价值12000元的项链一把抓走,然后逃跑。跑了50米之后,甲以为乙的项链根本不值钱,就转身回来,跑到乙跟前,打了乙两耳光,并说:“出来混,也不知道戴条好项链”,然后将项链扔给乙。对甲的行为,应当如何定性?()
工业上的数控机床所属的计算机应用领域是
Drinkfromplasticbottlescanraisethebody’slevelsofacontroversial"gender-bending"chemicalbymorethantwothirds,acc
最新回复
(
0
)