首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
admin
2020-03-16
89
问题
证明:方程x
α
=lnx(α<0)在(0,+∞)上有且仅有一个实根.
选项
答案
令f(x)=lnx-x
α
(α>0),则f(x)在(0,+∞)上4连续,f(1)=-1<0,[*]故对任意M>0,存在X>1,当x>X时,有f(x)>M>0.任取x
0
>X,则f(1)f(x
0
)<0,根据零点定理知,存在ξ∈(1,x
0
),使得f(ξ)=0,即方程x
α
=lnx在(0,+∞)上至少有一实根. 又lnx在(0,+∞)上单调递增,因α<0,一x
α
也单调递增,从而f(x)在(0,+∞)上单调递增,因此方程f(x)=0在(0,+∞)上只有一个实根,即方程x
α
=lnx在(0,+∞)上只有一个实根.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/YdA4777K
0
考研数学二
相关试题推荐
[20l0年]设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f′(ξ)+f′(η)=ξ2+η2.
[2001年]已知f(x)在(一∞,+∞)内可导,f′(x)=e,[f(x)一f(x一1)],则c=_________.
[2005年]设y=(1+sinx)x,则dy∣x=π=_________.
[2015年]已知函数f(x)=,求f(x)零点的个数.
[2010年]记un=∫01∣1nt∣[ln(1+t)]ndt(n=1,2,…),求极限un.
[2014年]设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:∫aa-∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
[2014年]设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:0≤∫axg(t)dt≤x一a,x∈[a,b];
[2004年]曲线y=(ex+e-x)/2与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).计算极限
设三阶实对称矩阵A的各行元素之和都为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次线性方程组AX=0的解.求A及[A一(3/2)E]6.
随机试题
以下关于秋水仙碱的描述,正确的有()。
某厂产品的废品率在15%左右,在计划中要提高工作质量,使废品率降到10%,这个10%是()
脂肪动员的限速酶是()
A.距根尖端1.5mm,根尖部根管内无任何X线透射影像B.在距根尖端5mm处从近中侧穿,根尖部根管内无根充物C.齐根尖端,根尖部近根管壁处有线状X线透射影像D.出根尖孔约1.5mm,根尖部根管内无任何X线透射影像E.仅在一个根管内,另一根根管内无任
治疗血淋可选用的中成药包括
个人住房贷款包括()
以就业率调整招生计划,让就业不好的专业少招生,有助于减轻相关方向学生的产出和相关专业学生的就业危机。但另一方面,以就业率调整招生计划又带有明显的市场经济特点。应该看到,教育是育人的产业,具有自身的特殊属性,与市场经济条件下的简单商品生产具有根本性不同。社会
“十五”期间,经济结构战略性调整的重点是( )。
[2014年]已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2一(2一y)lny,求曲线f(x,y)=0所围图形绕直线y=一1旋转所成旋转体的体积.
参照完整性是一个准则系统,Access使用这个系统用来确保相关表中的记录之间【】的有效性,并且不会意外而删除或更改相关数据。
最新回复
(
0
)