首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).
设f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).
admin
2013-09-15
137
问题
设f(x,y)与φ(x,y)均为可微函数,且φ
y
’
(x,y)≠0,已知(x
0
,y
0
)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).
选项
A、若f
x
’
(x
0
,y
0
)=0,则f
y
’
(x
0
,y
0
)=O
B、若f
x
’
(x
0
,y
0
)=0,则f
x
’
(x
0
,y
0
)≠0
C、若f
x
’
(x
0
,y
0
)≠0,则f
y
’
(x
0
,y
0
)=0
D、若f
x
’
(x
0
,y
0
)≠0,则f
x
’
(x
0
,y
0
)≠0
答案
D
解析
依题意知(x
0
,y
0
)是拉格朗日函数,F(x,y,λ)=f(x,y)+λφ(x,y)的驻点,即(x
0
,y
0
)使得
因为φ
y
’
(x
0
,y
0
)≠0,所以从(2)式可得
代入(1)式得
即f
x
’
(x
0
,y
0
)φ
y
’
(x
0
,y
0
)=φ
x
’
(x
0
,y
0
).
当f
x
’
(x
0
,y
0
)≠0且φ
y
’
(x
0
,y
0
)≠0时,f
x
’
(x
0
,y
0
)φ
y
’
(x
0
,y
0
)≠0,
从而f
y
’
(x
0
,y
0
)≠0,故选(D).
转载请注明原文地址:https://www.kaotiyun.com/show/sB34777K
0
考研数学二
相关试题推荐
(02年)设函数f(χ)在闭区间[a,b]上有定义,在开区间(a,b)内可导,则【】
[2016年]设矩阵且方程组AX=β无解.求方程组ATAX=ATβ的通解.
(2009年)(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)一f(A)=f’(ξ)(b一a).Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(
(01年)一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.(Ф(2):0.977,其中Ф(χ)是标准正
(97年)从点P1(1,0)作χ轴的垂线,交抛物线y=χ2于点Q1(1,1);再从Q1作这条抛物线的切线与χ轴交于P2.然后又从P2作χ轴的垂线,交抛物线于Q2,依次重复上述过程得到一系列的点P1,Q1;P2,Q2;…;Pn,Qn;….(1)求;
(01年)已知抛物线y=pχ2+qχ(其中P<0,q>0)在第一象限内与直线χ+y=5相切,且抛物线与χ轴所围成的平面图形的面积为S.(1)问P和q为何值时,S达到最大值?(2)求出此最大值.
(91年)求极限,其中n为给定的自然数.
(2007年)设函数f(x,y)连续,则二次积分等于()
(11年)设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Aχ=β的3个线性无关的解,k1,k2为任意常数,则Aχ=β的通解为【】
[2010年]设已知线性方程组AX=b存在两个不同的解.求方程组AX=b的通解.
随机试题
免疫应答的发生场所是:
患儿,男,3岁。面色少华,不思纳食,形体偏瘦,舌淡苔薄白。其治法是
下列情境中,适宜推行参与管理的是()。
实际利率是以实物为标准计算的,即物价不变,货币购买力不变条件下的利率。()
小乘佛教又名上座部佛教,在理论和实践的基础体系上仍接近于原始佛教。()
已满十四周岁不满十六周岁的人,犯故意杀人、()、投毒罪的,应当负刑事责任。
上海市新闻出版局对特许出版物经营活动统一管理,按产品向世博会特许办申领防伪标识。特许办负责特许出版物的世博标识授权审批,新闻出版局负责出版物内容审批。特许办为经新闻出版局审批的产品提供授权审批的绿色通道。双方分别通过各自的零售渠道(含外省市零售通道),推进
战后列强围绕中国问题产生的矛盾及其表现。
在美国,每年接受治疗的精神忧郁症病人的人数超过200万人,是中国的接近10倍,而中国的人口则接近美国的10倍。以下各项如果为真,都有助于解释上述现象,除了:
MillionsofAmericansandforeignersseeG.I.Joeasamindlesswartoy,thesymbolofAmericanmilitaryadventurism,butthat’
最新回复
(
0
)