首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2009年)(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)一f(A)=f’(ξ)(b一a). Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(
(2009年)(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)一f(A)=f’(ξ)(b一a). Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(
admin
2021-01-25
127
问题
(2009年)(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)一f(A)=f’(ξ)(b一a).
Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
,则f
+
’(0)存在,且f
+
’(0)=A.
选项
答案
(Ⅰ)取 [*] 由题意知F(x)在[a,b]上连续,在(a,b)内可导,且 [*] f(b)一f(a)=f’(ξ)(b一a). (Ⅱ)对于任意的t∈(0,δ),函数f(x)在[0,t]上连续.在(0,t)内可导,由右导数定义及拉格朗日中值定理 [*] 故f
+
’(0)存在,且f
+
’(0)=A.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/IAx4777K
0
考研数学三
相关试题推荐
设函数f(x)在x=a的某邻域内连续,且f(x)为极大值.则存在δ>0,当x∈(a一δ,a+δ)时必有:()
下列矩阵中,正定矩阵是()
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0()
[2002年]设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是().
[2008年]设n元线性方程组AX=b,其中当a为何值时,该方程组有唯一解,并求x1.
已知函数f(x,y,z)=x3y2z及方程x+y+z一3+e-3=e-(x+y+z).(I)如果x=x(y,z)是由方程(*)确定的隐函数满足x(1,1)=1,又u=f(x(y,z),y,z),求(Ⅱ)如果z=z(x,y)是由方程(*)确定的隐函数满足
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布.首先开动其中一台,当其发生故障时停用,而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
设X1,X2,…,Xn是来自总体X的简单随机样本,其均值和方差分别为X与S2,且X~B(1,p),0<P<1.(I)试求:X的概率分布;(Ⅱ)证明:
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记求:U和V的相关系数ρ.
随机试题
根据战略的进攻性进行划分,以下选项不属于该分类的是()。
下列各项中,应计入其他业务成本的是()
胎头以俯屈状态进人骨盆入口,以双顶径衔接。()
切除前牙3/4冠的邻面时,应尽量少切割唇侧组织,其目的是()
[2016真题·单选]容量是锅炉的主要性能指标之一,热水锅炉容量单位是()。
当城市燃气供应系统中只设一个储配站时,该储配站设在气源厂附近,这种设置方式称为()。
Icanseetheblackthingswithmy______.
目前,在我国金融、冶金、石油、石化、铁道、船舶、航天、航空,乃至轻工、纺织等领域,都有一大批国有企业成为行业骨干,支撑和带动着整个经济的发展。这表明()。
同比
算法的时间复杂度是指()。【10年3月】
最新回复
(
0
)