首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布.首先开动其中一台,当其发生故障时停用,而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布.首先开动其中一台,当其发生故障时停用,而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
admin
2019-05-08
58
问题
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布.首先开动其中一台,当其发生故障时停用,而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
选项
答案
解一 设T的分布函数为F(t),则F(t)=P(T≤t).又设第i台记录仪无故障工作的时间为X
i
(i=1,2),则T=X
1
+X
2
是X
1
,X
2
的函数.为求f(t),需先根据分布函数的定义求出F(t).因X
1
,X
2
相互独立,且同服从于参数为5的指数分布,由 [*] 得到 [*] 当t>0时,有 [*] 当t<0时,F(t)=P(T≤t)=0.综上所述,得到 [*] 则 [*] 因X
i
服从参数λ=5的指数分布,则 E(X
i
)=1/5,D(X
i
)=1/25(i=1,2). E(T)=E(X
1
+X
2
)=E(X
1
)+E(X
2
)=2/5, 又X
1
与X
2
独立,故D(T)=D(X
1
+X
2
)W=D(X
1
)+D(X
2
)=2/25. 解二 用卷积公式求之. [*] 而 [*] 当t≤0时,因积分中x
1
≥0,故t-x
1
≤0,所以f
X
1
(t-x
1
)=0.则f(t)=0. 当t>0时,若t>x
1
>0,则[*]故 [*] 下同解一(略).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/BoJ4777K
0
考研数学三
相关试题推荐
求幂级数的收敛域,并求其和函数.
(1)求常数m,n的值,使得=3.(2)设当x→0时,x-(a+bcosx)sinx为x的5阶无穷小,求a,b.(3)设当x→0时,f(x)=ln(1+t)dt~g(x)=xa(ebx-1),求a,b.
求幂级数n(n+1)xn的和函数.
设总体X的概率密度为其中参数θ(0<θ<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。求参数θ的矩估计量。
已知随机变量X服从参数为λ的指数分布,则P{X+Y=0}=________;P{Y≤}=________。
设随机变量X的密度函数f(x)=且P{1<X<2}=P{2<X<3},则常数A=________;B=________;概率P{2<X<4}=________;分布函数F(x)=________。
设随机变量X的分布函数为F(x),其密度函数为其中A为常数,则的值为()
已知总体X的数学期望E(X)=μ,方差D(X)=σ2,X1,X2,…,Xn是取自总体X容量为2n的简单随机样本,样本均值为,统计量,求E(Y)。
已知随机变量X服从(1,2)上的均匀分布,在X=x条件下Y服从参数为x的指数分布,则E(XY)=________。
随机试题
下列关于变现能力分析的说法,正确的有()。Ⅰ.反映变现能力的财务比率主要有流动比率和速动比率Ⅱ.企业能否偿还短期债务,要看有多少债务,以及有多少可变现偿债的资产Ⅲ.通常认为正常的速动比率为1,低于1的速动比率说明短期偿债能力一定低
下列哪种情况,宜选用官内节育器避孕
某工程双代号时标网络计划如图所标,该计划表明()
竣工决算的编制包括有()。
西方财政学者所说的价格再分配所得是指()。
为提高产品的合格率,几名工人自动组成QC小组。该小组将收集的数据绘制到直方图中,属于质量改进阶段的是()。
工人操作机器时,能熟练做到眼、耳、手并用,这体现的注意品质是()。
Comparisonsweredrawnbetweenthedevelopmentoftelevisioninthe20thcenturyandthediffusionofprintinginthe15thand1
近年以至今后数年,对中国经济体制改革影响最大的事情,莫过于加入世界贸易组织。特别是近两年的各项改革,几乎无一不是在适应世贸组织的要求,且改革的步伐明显加快,改革也开始越来越深人到计划经济的最核心领域。因而,可以说,中国经济体制在经过了20多年的渐进改革之后
PartⅡReadingComprehension(SkimmingandScanning)Directions:Inthispartyouwillhave15minutestogooverthepassagequ
最新回复
(
0
)