首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)分别满足如下两个条件中的任何一个: (Ⅰ)f(x)在x=0处三阶可导,且=1; (Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(一1)f"(x)一xf’(x)=ex一1, 则下列说法正确的是
设f(x)分别满足如下两个条件中的任何一个: (Ⅰ)f(x)在x=0处三阶可导,且=1; (Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(一1)f"(x)一xf’(x)=ex一1, 则下列说法正确的是
admin
2019-02-23
67
问题
设f(x)分别满足如下两个条件中的任何一个:
(Ⅰ)f(x)在x=0处三阶可导,且
=1;
(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(
一1)f"(x)一xf’(x)=e
x
一1,
则下列说法正确的是
选项
A、f(0)不是f(x)的极值,(0,f(0))不是曲线y=f(x)的拐点.
B、f(0)是f(x)的极小值.
C、(0,f(0))是曲线y=f(x)的拐点.
D、f(0)是f(x)的极大值.
答案
B
解析
(Ⅰ)由条件
=1及f’(x)在x=0连续即知
(x)=f’(0)=0.
用洛必达法则得
.
因
(x)=f"(0),若f"(0)≠0,则J=∞,与J=1矛盾,故必有f"(0)=0.再由f"’(0)的定义得
→ f"’(0)=2.
因此,(0,f(0))是拐点.选C.
(Ⅱ)已知f’(0)=0,现考察f"(0).由方程得
又f"(x)在x=0连续→f"(0)=3>0.因此f(0)是f(x)的极小值.应选B.
转载请注明原文地址:https://www.kaotiyun.com/show/rE04777K
0
考研数学一
相关试题推荐
已知事件A与B互不相容,则=_______,=______,=______.
设A,B都是三阶矩阵,A相似于B,且|E—A|=|E一2A|=|E一3A|=0,则|B-1+2E|=__________
设f(x)在[a,b]上可导,且f’+(a)>0,f’-(b)<0,证明方程f’(x)=0在(a,b)内至少有一个根.
已知抛物线y=ax2+bx+c,在其上的点P(1,2)处的曲率圆的方程为,求常数a,b,c的值.
设3维列向量组α1,α2,α3线性无关,γ1=α1+α2-α3,γ2=3α1-α2,γ3=4α1-α3,γ4=2α1-2α2+α3,则向量组γ1,γ2,γ3,γ4的秩为().
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT,求:(1)A2;(2)矩阵A的特征值和特征向量.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵
设c1,c2,…,cn均为非零实常数,A=(aij)n×m为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设总体X~N(μ,σ2),X1,X2,…,X9为来自X的简单随机样本,试确定σ的值,使得概率
设则m,n可取().
随机试题
儿童缺锌的表现有
我国对医疗保险参保人的分类不包括
《中国药典》规定用HPLC法测定含量的药物有()
给兔做心脏采血时,一次不超过
投资于衍生品的QDⅡ基金,应当在每个工作日计算并披露基金份额净值。( )
下列关于个人教育贷款的说法,不正确的是()。
下列内容体现与银行往来异常现象的有()。
在社会服务机构中,以没有钱作为出发点,根据机构在来年的实际需要而作出预算的是()财务预算方法。
一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%,第二次又加入同样多的水,糖水的含糖百分比变为12%,第三次再加入同样多的水,糖水的含糖百分比将变为多少?()
下列说法错误的是()。
最新回复
(
0
)